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Preface

Chloride-induced corrosion of steel bar in concrete ranks number one in 
durability issues of reinforced concrete structures. Understanding the trans-
port and interactions of chlorides in concrete is the first step in controlling 
the chloride-induced corrosion of reinforced concrete. Due to extensive 
research funded by governments or industries around the world, a great 
deal of knowledge has been generated, great advances have been made, 
and many engineering experiences have been obtained over the past few 
decades. Durability design has become dominant in the design of impor-
tant costal infrastructures which may subject to chloride attack. However, 
this doesn’t mean that we have completely understood the transport and 
interactions of chloride in concrete and can accurately predict and control 
it. Still, many scientific issues are yet to be clarified.

This book focuses on the chloride transport and interactions in cement 
and concrete. It reviews the general knowledge, technologies, and experi-
ences involved in these areas, and presents the state-of-art progress made 
recently. The authors of this book have long been involved in research related 
to chloride transport and interactions in concrete at Hunan University, 
Ghent University, Central South University, and Xiamen University of 
Technology. Over the past few decades, many graduate students have 
obtained their M.Sc. or Ph.D. degrees in this field of study, and the theses 
are important sources for this book. Obviously, without the knowledge 
and experiences obtained by them, without their extraordinary works, 
this book would not be possible. The authors would like to express their 
gratitude to each and every one of them who have made contributions to 
the content of this book. Special thanks go to Dr. Runxiao Zhang, a post-
doctoral fellow in the Department of Civil Engineering at the University 
of Toronto, for his participation in the preparation of Chapter 7, and the 
students who helped with organizing the format of entire book, as well as 
drawing the new graphs and tables.

The intended audience of this book includes students, researchers, and 
practicing engineers in the concrete community. This book can also be used 
as a reference book or extensive reading book for graduate courses on dura-
bility of reinforced concrete structures. Researchers may be inspired by 
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the comprehensive overview on the chloride transport and interaction in 
cement and concrete. Practicing engineers can also benefit from this book 
through learning the basic knowledge and practical techniques.
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1

Chapter 1

Introduction

The deterioration of reinforced concrete structures caused by reinforcement 
corrosion is a worldwide concrete durability problem, particularly when the 
concrete structures are located in marine environments. Mostly, concrete 
constructions can be submitted to attacks from aggressive substances, such 
as chloride and carbon dioxide, chemically. Among these, chloride-related 
reinforcing steel corrosion accounts for the most of them. When chloride 
concentration in the pore solution around steel bars reaches a threshold 
value and breaks the passivation film, corrosion can be initiated at some 
connection points of the steel bar until the local damage of concrete. For 
concrete structures exposed to extreme conditions, such as marine exposi-
tion or highway structures where de-icing salt is used, the damage caused 
by chloride ingress does great harm to the durability of the reinforcement 
concrete structure and gives rise to high repairing and reconstruction costs.

1.1 � CHLORIDE-RELATED CORROSION 

Normally, the concrete embedded in concrete is highly resistant to cor-
rosion under the protection of cover layer. In well-designed and properly 
cured concrete with relatively low water to binder (w/b) ratio, the penetra-
tion of aggressive substances such as chloride ions and carbon dioxide can 
be effectively restricted from concrete surface to steel surface. The condi-
tion of high alkalinity (pH>13.5) in pore solution of cement-based materi-
als provides an excellent condition for the passivation of steel (Singh and 
Singh 2012). In one view, steel can be protected from corrosion by the 
surface layer film (approximately 10000 Å thick), which generally consists 
of ferric oxide (Fe2O3) and is thought to passivate the steel from corro-
sion (Shan et al. 2008; Waseda et al. 2006; Tittarelli and Bellezze 2010). 
It can be concluded that in a properly designed, constructed, and main-
tained reinforced concrete structure, the problem of steel corrosion should 
be neglected during the service life. However, these requirements on the 
design, construction, and maintenance of concrete structure are always not 
achieved in practice, and the corrosion of steel bar in reinforced structures 
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has become a common cause of the decreased durability and service life of 
concrete structures (Alexander and Nganga 2014). 

Generally, it is considered that two stages are included in process of cor-
rosion, especially for pitting corrosion: initial and propagation stages. The 
initial stage of corrosion relates to the breakdown of the passivation layer, 
while the propagation stage of corrosion describes the reaction between 
steel and electrolytes and the formation of corrosion products. There is gen-
eral agreement about the mechanism of the propagation stage which is the 
transformation of electrons from anode to cathode surface of steel and the 
formation of electrical current in steel. In the propagation stage, corrosion 
products such as Fe(OH)3, FeSO4, Fe3O4, FeO(OH), HFeOOH, and HFeO2 
will be generated based on different composition and ionic concentration of 
pore solution (Bazant 1979). In this period, re-passivation of steel surface 
can occur when chloride concentration in pore solution around the steel 
surface is reduced. It was reported that sufficient chloride concentration 
was necessary for the propagation of steel corrosion and to keep the steel 
surface away from re-passivation (Eichler et al. 2009).

Generally, a passive oxide layer can be formed on the steel surface in 
alkaline conditions, which is followed by electrochemical deposition of 
polyaniline (PAni) (Jafarzadeh et al. 2011). The doped PAni layer is in con-
tact with the oxidized surface and can stabilize the oxide ions from dis-
solution or take part in the corrosion process. It was reported (DeBerry 
1985) that a PAni layer could be electrochemically deposited above the pas-
sive oxide layer formed on steel surfaces, which provide anodic protection 
from sulfuric acid corrosion. Even though some papers (Kraljić et al. 2003; 
Sathiyanarayanan et al. 2008) have shown that no corrosion resistance 
could be provided, the corrosion protection of PAni and the oxide layer in 
different types of steel have been revealed by many researches (Chaudhari 
and Patil 2011; Johansen et al. 2012; Karpakam et al. 2011).

In order to describe the initial corrosion stage, several theories have 
been proposed (Kuang and Cheng 2014), such as local acidification theory 
(Galvele et al. 1978; Galvele 1976), depassivation–repassivation theory 
(Dawson and Ferreira 1986; Richardson and Wood 1970), chemical dis-
solution theory (Hoar and Jacob 1967), point defect models (PDM) (Chao 
et al. 1981; Urquidi and Macdonald 1985), chemical–mechanical models 
(Hoar 1967; Sato 1971), and anion penetration/migration models (Okamoto 
1973; Rosenfeld and Marshakov 1964). Among all of these theories, a con-
sensus was obtained that the adsorption of aggressive ions, such as chloride 
ions, plays an important role in the initial stage of steel corrosion (Angst et 
al. 2011; Cheng et al. 1999). The depassivation of protection layer on the 
surface of steel is directly induced by reaching the threshold value of chlo-
ride concentration in pore solution in contact with steel surface (Ghods et 
al. 2012). Bertocci and Ye (1984) reported that the most important role of 
chloride ions on steel corrosion rested on the increasing possibilities of local 
breakdown of the passive oxide layer. In some studies (Angst et al. 2011; 
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Liao et al. 2011), it was found that when chloride ions were introduced into 
the steel surface, no protective oxide layer could be formed in the anodic 
side and a chloride-ion film was formed to initiate the corrosion. The roles 
chloride ions played in steel corrosion can be: increase of iron solubility 
and conductivity of electrolytes, and dissemination of corrosion products 
(Lou and Singh 2010). Electronically, the existence of chloride ions accel-
erates the corrosion initiation by increasing the susceptible sites (Burstein  
et al. 1993) and decreasing the value of pitting potential (Tang et al. 2014;  
Xu et al. 2010). 

Extensive studies (Otieno et al. 2016a; Tennakoon et al. 2017; Hou et 
al. 2016; Borg et al. 2018; Borade and Kondraivendhan 2019) have been 
conducted to investigate the effects of chloride-induced corrosion on dura-
bility and performance of concrete structures. It was considered that the 
corrosion of steel bars due to chloride penetration dominated the durabil-
ity of concrete structures exposed to extreme condition, such as marine 
exposition or highway structures where de-icing salt was used. The damage 
caused by chloride ingress does great harm to the durability of reinforce-
ment concrete structures and gives rise to high repairing and reconstruc-
tion costs. The deterioration of reinforced concrete due to chloride-related 
corrosion can be normally divided into four stages, as shown in Figure 1.1 
(Berke et al. 2014; Budelmann et al. 2014): the initial cracking of concrete 
due to external applied pressure or shrinkage of concrete; the penetration 
of chloride ions in concrete cover and accumulates around the steel surface; 
the corrosion of steel which results in the formation and accumulation of 
corrosion products; the generation of cracks in concrete cover and fracture 
deterioration. Generally, the permeability of concrete cover and the diffu-
sion rate of chloride ions are dominant factors of the initial stage, while 
oxide dissolution, moisture condition, and electrical resistance of concrete 
control the last three stages of steel corrosion.

Figure 1.1 � Steel corrosion stages in concrete. (From Budelmann et al. 2014.)
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As it has become a major problem threatening concrete structures, stud-
ies on damage prevention in chloride-induced steel corrosion have been 
extensively conducted (Ann and Song 2007; Pour-Ali et al. 2015; Van 
Belleghem et al. 2018). According to the chloride-related corrosion mecha-
nism described previously, efforts that have been made to prevent chloride 
corrosion involve keeping chloride ions from penetrating into steel surface 
(Pack et al. 2010; Song et al. 2008) and increasing the chloride binding 
capacity of cement matrix from the concrete point of view (Glass and 
Buenfeld 2000; Yuan et al. 2009).

1.2 � CHLORIDE TRANSPORT IN 
CEMENT-BASED MATERIALS

Generally, chloride ion can be introduced into concrete in two ways: (1) as 
an admixture (internal chloride); (2) penetration from external environ-
ment (external chloride), mainly from seawater and de-icing salt. The inter-
nal chloride can be well controlled by using chloride-free ingredients and 
choosing raw materials with low chloride content. But the chloride ions 
penetrated from the environment are mostly inevitable and difficult to pre-
dict and control. The service life of reinforced concrete depends more on 
chloride ions penetrating from the external environment. Thus, the trans-
port of chloride in concrete has attracted a lot of attention. For the exter-
nal chloride, no matter from where the chloride externally originated, by  
de-icing salt or seawater, chloride generally penetrates into concrete with 
the transportation of water within materials. When chloride ions continue 
to penetrate into concrete or chloride ingress is repeated, the chloride con-
centration around the steel surface can be relatively high. 

As a homogenous porous material, cement concrete is mostly perme-
able by chloride ions from the surrounding environment. Based on differ-
ent driven forces, the transport of chloride ions in cement concrete can be 
divided into five classification groups (Yuan et al. 2009): hydrostatic advec-
tion, capillary suction, diffusion, electrical migration, and thermal migra-
tion. The saturation degree of a concrete structure is always the foremost 
factor controlling the chloride transport process. For some marine construc-
tions, concrete structures may always experience exposure to sea water and 
be exposed to dry condition periodically. When concrete is exposed to salt 
water or a high relative humidity environment, the salt water can enter and 
increase the chloride concentration in pore solution. If the external envi-
ronment becomes dry with the removal of exposure water or decrease of 
relative humidity, the internal water of the concrete can evaporate and shift 
in different directions with the movement under wet conditions. During 
this process, only water can be evaporated, and salts are left. Based on the 
duration of the dry process, the water in the area of the concrete surface 
can be totally removed. Thus, the chloride concentration in this zone can 
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be increased and diffuses toward parts with lower concentration under the 
concentration gradient forces. Therefore, in dry conditions, the internal 
water moves outward from the concrete while salts move inward. Thus, in 
the next cycle of the wet process with salt water, more salts will be brought 
into samples with water. The chloride concentration profile along the pen-
etration side may first be decreased, then increased. Generally, the wetting 
process occurs rapidly while longer a period of time for drying is needed. 
Therefore, the chloride ingress process and penetration rate depend on the 
length of the wetting and drying processes. 

Studies have been done on ion and fluid transport in cement concrete 
structures with different saturation degrees, and several models have been 
proposed to describe the chloride ingress process within concrete structures 
(Jin et al. 2008; Yang et al. 2006; Otieno et al. 2016). By taking into account 
the diffusion and sorption of chloride ions in concrete, a durability simulator 
model was designed to simulate the marine environment with wetting–dry-
ing cycle (Iqbal and Ishida 2009). Chloride profiles were simulated by the 
proposed model with the moisture conductivity. In 1931, Richards (1931) 
firstly studied the mechanism of chloride transport in unsaturated porous 
solids, and an equation was proposed to describe the water flow under the 
capillary suction. Based on this work, Samson et al. (2005) developed a model 
to describe the ion transport in unsaturated cement systems by coupling the 
ionic and water transport models within materials. Generally, a parameter 
or model of dynamical moisture within systems is applied to take the water 
saturation degree into account during the chloride transport studies.

Besides the wetting–drying circles, an external applied electrical field 
can also accelerate the penetration of chloride salts into concrete, and it has 
been widely applied in rapid chloride migration tests. Compared to concen-
tration gradient force, the external applied voltage can accelerate the ingress 
of chloride salts into concrete samples more significantly. According to the 
rapid chloride migration (RCM) test, where external electrical voltage was 
applied, it was reported that the obtained chloride migration coefficient 
was larger than chloride diffusion coefficient obtained from the natural dif-
fusion test. Even though the RCM test has been widely applied to evaluate 
the chloride penetration resistance of concrete samples, many controver-
sial issues still remain unsolved. Regarding the movement of chloride ions 
within cement-based materials, parts of them can be fixed by chemical or 
physical works between chloride ions and hydration products or other solid 
phases. These parts of chloride ions are defined as bound chloride, and 
this phenomenon is known as chloride binding. Free chloride ions in pore 
solution will be reduced due to chloride binding, and the flow of chloride 
ions with pore solution can be slowed down. However, the external applied 
voltage can bring some unexpected changes on chloride binding of cement 
matrix. On the other hand, the shortening of the ingress period due to 
electrical voltage can also change the content of chloride ions reacted with 
solid phase in samples.
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Some researchers (Krishnakumark 2014; Spiesz and Brouwers 2013; 
Voinitchi et al. 2008) reported that the adsorption of chloride ions after 
reaching the steady state was independent of the applied voltage, and the 
applied voltage mainly affects the free chloride concentration in pore solu-
tion under steady state. Numerical simulation on non-steady-state diffusion 
and RCM tests showed that the free chloride ions in pore solution could 
be instantaneously combined, and no variation of free and bound chlo-
ride content was found between samples after diffusion and migration tests 
(Spiesz and Brouwers 2012). However, Spiesz and Brouwers (2013) showed 
that it took seven days or even longer for chloride binding in cement matrix 
to reach equilibrium in diffusion tests, which was much longer than the 
testing duration of RCM test. Castellote et al. (1999, 2001) analyzed the 
chemically bound and free chloride ions of the samples after RCM test 
using X-ray fluorescence technique and leaching method, respectively. In 
their studies, the obtained chloride adsorption isotherm was compared with 
that from diffusion test by Sergi et al. (1992). The applied electrical field 
suppressed chloride binding at lower free chloride concentration (<97 g/L)  
while enhanced it at higher concentration. The decreased contact time and 
altered electrical double layer (EDL) property were considered as reasons 
to cause these differences. 

It is apparent that under concentration gradient, wetting and drying cir-
cles, or external applied voltage, the chloride ions may progressively pen-
etrate through the concrete cover layer toward the surface of steel. Then, 
along with the different depth from the concrete surface, a chloride pro-
file can be established. As shown in Figure 1.2 (Toumi et al. 2007), the 
total chloride content gradually decreased with the increase of distance 
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Figure 1.2 � Concrete chloride content profile in immersion test. (From Toumi et al. 
2007.)
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to concrete surface. Sometimes, the chloride concentration in the outmost 
layer will be reduced, as shown in Figure 1.3 (Ann et al. 2009). There 
is a sink of the chloride profile in the outermost layer of concrete. The 
rapid water movement during wetting and drying circle and the decrease of 
bound chloride content due to the portlandite precipitation were considered 
as the reasons for this phenomenon (Ann et al. 2009). Generally, the chlo-
ride content results of the surface layer are ignored and mathematical fitting 
is applied to calculate the surface chloride content, as shown in Figure 1.3. 
Besides the total chloride content, the chloride profile for free chloride and 
chemically or physically bound chloride content have been also studied in 
the literature (Glass and Buenfeld 2000; Ishida et al. 2009). 

1.3 � INTERACTION OF CHLORIDE WITH 
HYDRATION PRODUCTS OF CEMENT

For concrete structures, chloride ions may derive from aggregates/mixing 
water (internal chloride) or penetrate into steel surface during exposure 
to chloride-bearing environments (intruded chloride). During the ingress 
process into cement concrete, the chloride ions in pore solution can be cap-
tured by the solid phases, including unhydrated cement component and 
hydration products of cementitious materials. The interaction between 
chloride ions and cement hydrates can be chemical or physical, and are 
defined as chemical binding and physical adsorption respectively. It was 
generally considered that the free-state chloride ions in pore solutions were 
mainly responsible for the corrosion of reinforcement steel (Yuan et al. 
2009). However, Glass and Buenfeld (1997, 2000) stated that the bound 

Figure 1.3 � A decrease of the surface chloride content at the right surface of concrete in 
a conventional chloride profile. (From Ann et al. 2009.)



8  Transport and Interactions of Chlorides in Cement-Based Materials﻿

chloride ions could also induce the corrosion of reinforcement steel when 
they were released into pore solutions under certain conditions. The effects 
of chloride binding on chloride penetration and chloride-related corrosion 
can be considered as three aspects: (1) reduction of the free chloride con-
centration in the vicinity of the reinforcing steel, which will reduce the 
chance of corrosion; (2) removal of chloride from the diffusion flux, thus 
retarding the penetration of chloride to the level of the steel (Li et al. 2015); 
(3) formation of Friedel’s salt, which results in a less porous structure and 
slows down the transport of chloride ion. Therefore, the effect of chloride 
binding must be taken into account when studying chloride ion transport 
in concrete. It can be seen from Figure 1.4 that the consideration of chlo-
ride binding can change the chloride profile (Martın-Pérez et al. 2000). 
However, it was also reported that chloride binding could have no remark-
able effects on penetration depth (Ye et al. 2016).

Due to the retardation effect of bound chloride, the free and bound 
chlorides must be distinguished from each other in service life prediction 
models. Chemical binding is generally considered as the result of reaction 
between chlorides and C3A or AFm phases to form Friedel’s salt or the reac-
tion with C4AF to form a Friedel’s salt analog (Florea and Brouwers 2012; 
Ipavec et al. 2013; Yuan et al. 2009). Physical binding is due to the adsorp-
tion of chloride ion to the C–S–H surfaces. Studies on mechanism of chlo-
ride binding of cement-based materials mostly focus on C-S-H (Shi et al. 
2017) and AFm phase (Chen et al. 2015), as the former controls the physi-
cal adsorption while the latter dominates the chemical binding. However, 
the portlandite and ettringite (Ekolu et al. 2006; Hirao et al. 2005), also 
the Friedel’s salt (Elakneswaran et al. 2009), formed through the interac-
tion of other AFm phases and intruding chlorides can bind chloride ions 
(Florea and Brouwers 2012). Besides, the alumina phase in mineral com-
ponent of cementitious materials such as C3A and C4AF can also bind 
the chloride ions and transfer into Friedel’s salt. Usually, binding occurs 
instantaneously or at a much greater rate than transport velocities. The 
pore system is always considered to be at equilibrium. This assumption may 
be valid, when the chloride ion travels slowly, just in the case of diffusion 
alone, but this may not be valid when the ions are moving quickly and the 
test duration is short, as in the case of the rapid migration test. In this case, 
transport would be occurring too quickly for equilibrium to be maintained 
(Barbarulo et al. 2000; Samson et al. 2003). Tang and Nilsson (1993) 
reported that when crushed particles (with the size of 0.25–0.2 mm) were 
immersed in chloride solution, chemical binding almost completed after 
less than 14 days. However, Arya et al. (1990) found that bound chlorides 
were still increasing after 84 days of immersion in 2% chloride solution. 
Olivier (2000) believed that the rate of chloride binding on crushed mortar 
particles was very high. Indeed, more than 80% of the bound chlorides are 
bound in less than 5 h.
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Figure 1.4 � Free chloride concentration profiles at (a) 6 months, (b) 5 years, and (c)  
50 years for 0.5 M exposure conditions. (From Martın-Pérez et al. 2000.) �
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The research on chloride binding has been carried out for a long time and 
in different cementitious systems, including cement-based materials (Gbozee 
et al. 2018; Shi et al. 2016) or alkali-activated materials (Ke et al. 2017a, b).  
In 1998, Justnes (1998) did an excellent work on reviewing the chloride 
binding in cementitious materials. The effects of cement type, mineral addi-
tives or replacement, cement content, water to binder ratio, curing and 
exposure condition, and chloride source on chloride binding of cementitious 
materials were discussed in detail. Besides, many experimental and review 
papers have also studied on different factors (De Weerdt et al. 2014, 2015; 
Florea and Brouwers 2012) which can affect the chloride binding capacity 
of cementitious materials. According to these studies, it has been confirmed 
that the content of C3A and C4AF dominate the chemical binding of chloride 
ion, while C3S and C2S dominate physical adsorption. Hydroxyl and sulfate 
ions may decrease the chloride binding capacity of cementitious materials.

1.4 � ORGANIZATION OF THIS BOOK

This book summarizes recent progress in chloride-related issues in cement-
based materials and structures. Focused on chloride-related corrosion 
occurring in cement concrete structures, the chloride ingress process, inter-
action between chloride ions and cement hydrates, influential factors, and 
testing methods for chloride transport in cement concrete are presented in 
detail. A brief introduction on the background of the topic of every chapter 
is firstly presented and is followed by a detailed summary of all related 
aspects of the topic. 

1.4.1 � Chapter 2—Mechanisms of Chloride 
Transport in Cement-Based Materials

In this chapter, the chloride transport process in cement-based materials is 
studied, and different mechanisms based on the driven forces are presented. 
The mechanism and influential factors of different chloride transport meth-
ods, including hydrostatic advection, capillary suction, diffusion, thermal 
and electrical migration, are discussed. The contents of this chapter can help 
to understand the transport process of chloride ions in cement-based materi-
als and also lay the foundation for discussions in the chapters that follow it.

1.4.2 � Chapter 3—Chemical and Physical 
Interactions between Chlorides 
and Cement Hydrates

In this chapter, mechanisms of chloride binding, including chemical binding 
and physical adsorption, are presented. Formation and stability of Friedel’s 
salt are introduced as the main factors controlling the chemical-binding 
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capacity of cement-based materials. The properties of electrical double 
layer formed at solid–liquid interface are discussed to explain the phenom-
enon of “chloride concentrate,” which can be considered as an instable 
physical adsorption between hydration products and chloride ions.

1.4.3 � Chapter 4—Chloride Binding and Its Effects 
on Characteristics of Cement-Based Materials

In this chapter, different forms of binding isotherm used to describe the 
chloride binding capacity of cement-based materials are presented. The 
application of binding isotherms in chloride binding capacity evaluation is 
discussed. The effects of chloride binding on microstructure and properties 
of cement concrete structure are summarized. 

1.4.4 � Chapter 5—Testing Methods for Chloride 
Transport in Cement-Based Materials

In this chapter, classifications of testing method for chloride transport in 
cement-based materials are reported. Testing procedure, parameters, and 
influential factors of these measurements are overviewed. Relationship 
and comparison of testing results of these different methods are also 
provided.

1.4.5 � Chapter 6—Determination of Chloride 
Penetration in Cement-Based Materials 
Using AgNO3-Based Colorimetric Methods

As an important testing method on chloride penetration depth determi-
nation, AgNO3 colorimetric method has been widely applied. The factors 
affecting the testing results for penetration depth and chloride concen-
tration at the color change boundary are discussed. The applications of 
AgNO3 colorimetric method in chloride diffusion and migration coeffi-
cients determination are also reviewed. 

1.4.6 � Chapter 7—Factors Affecting Chlorides 
Transport in Cement-Based Materials

Chloride transport is a complex process in which chemical and physical 
reactions simultaneously occur. During the chloride transport process, any 
changes of properties, microstructure of materials, and environmental con-
ditions can cause effects on the chloride transport process. In this chapter, 
factors that may influence the chloride transport of cement-based materi-
als, including ion interaction, microstructure, chloride binding, and crack-
ing are introduced and discussed in detail.
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1.4.7 � Chapter 8—Simulation and Modeling of 
Chloride Transport in Cement-Based Materials

Chloride transport is one of the main aspects in the establishment of service 
life prediction of concrete structures, and different models simulating the 
chloride transport process in cement-based materials have been proposed. 
Based on the knowledge and discussion in the previous chapters about chlo-
ride transport, chloride binding, and their relationship with the microstruc-
ture of the structure, this chapter summarizes different chloride transport 
models proposed for cement-based materials and their application in differ-
ent materials and environmental conditions.
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