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Preface

About thirty-five years ago there was an awakening of interest of researchers
in commutative algebra to the algorithmic and computational aspects of
their field, marked by the publication of Buckberger’s thesis in 1966. His
work became the starting point of a new research field, called Computa-
tional Commutative Algebra. Currently, computer programs implementing
versions of his and related algorithms are readily available both as commer-
cial products and academic prototypes. These are of growing importance
in almost every field of applied mathematics because they deal with very
basic problems related to systems of polynomial equations. Statisticians,
too, should find many useful tools in computational commutative algebra,
together with interesting and enriching new perspectives. Just as the in-
troduction of vectors and matrices has greatly improved the mathematics
of statistics, these new tools provide a further step forward by offering a
constructive methodology for a basic mathematical tool in statistics and
probability, that is to say a ring. The mathematical structure of real random
variables is precisely a ring, and other rings and ideals appear naturally in
distribution theory and modeling. However, the ring of random variables
is a ring with lattice operations which are not fully incorporated into the
theory we present, at least not yet.
The authors’ attention was drawn to the relevance of Gröbner basis the-

ory by a paper on contingency tables by Sturmfels and Diaconis circulated
as a manuscript in 1993. With initial help provided by Professor Teo Mora
(University of Genova), a first application to design of experiments was
published by G. Pistone and H. Wynn in 1996 (Biometrika) and this field
of application was more fully developed by E. Riccomagno in her Ph.D.
thesis work during 1996-97 at the University of Warwick. Subsequent pa-
pers in the same direction were published by the authors and a number
of coauthors. We are pleased to acknowledge (in alphabetic order) Ron
Bates, Massimo Caboara, Roberto Fontana, Beatrice Giglio, Tim Holliday,
Maria-Piera Rogantin.
During the few years this monograph was in the making, we have ben-

efitted from many contributions by others, and further related work is in
progress. Some of the contents of this book was first exposed at the series of
four GROSTAT workshops, which took place in successive years, starting
in 1997 at the University of Warwick (UK), the IUT-STID in Nice-Côte
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d’Azur in Menton (France), EURANDOM in Eindhoven (NL), and again,
in 2000, in Menton. We must thank all the participants and these institu-
tions for their support, in particular Professor Annie Cavarero, director of
IUT-STID.
We found keen collaborators at the University of Genova. We should

at least mention, together with those above, Professor Lorenzo Robbiano
(who also supported GROSTAT IV) and the CoCoA team who have had
a major influence on the algebraic and computational aspects of the field.
We are very grateful to them all for the early and generous access to their
research, for the high level of illumination it provided on the mathematical
foundations and the very fast computer code developed under the wings of
CoCoA.
We are grateful for many discussions with colleagues and coworkers. A

minimal list includes Wilf Kendall, Thomas Richardson, Raffaella Settimi
and Jim Smith, in Warwick, and Alessandro Di Bucchianico and Arjeh Co-
hen, in Eindhoven. Special thanks to Dan Naiman of The Johns Hopkins
University for allowing us to draw on recent joint work on tube theory in
Chapter 4. Ian Dinwoodie, from Tulane University, helped to strengthen
our understanding of the work of Diaconis and Sturmfels on toric ideals,
which we reach in the final sections of the book, from our own particular di-
rection. Because a considerable volume of the monograph is based on work
in progress, we have, on a few occasions, had to refer to unpublished, al-
though available, technical reports. We thank all the colleagues who helped
us by reading different versions of this work, some of them already men-
tioned, and also Neil Parkin for careful reading of the whole book. We also
thank our publishers for their help and considerable patience.
A cocktail of different grants and institutions has funded this research.

We should thank the UK Engineering and Physical Sciences Research
Council, the Italian Consiglio Nazionale delle Richerche, EURANDOM,
and, last but not least, IRMA and the University L. Pasteur of Strasbourg,
and Professor Dominique Collombier, who has hosted us during the final
revision of the book.
This book is dedicated to our families, with apologies to all for the ab-

sences that a triple collaboration must entail.

Giovanni Pistone
Eva Riccomagno

Henry Wynn

Strasbourg, France, October 2000



Notation

Common symbols

N positive integer numbers
Z integer numbers
Q rational numbers
R real numbers
C complex numbers
S∗ ∗ excludes the 0 from the set S
S+ non-negative entries of the set of numbers S:

for example Z+ = {a ∈ Z : a ≥ 0} = {0} ∪ N

d superscript dimension of the cartesian product
for example, Zd stands for Z × · · · × Z︸ ︷︷ ︸

d times
{a} 1. component-wise fractional part operator, a ∈ Rd

2. the set whose element is a
#A number of elements in the set A
[p] vector or list p as a column vector
[a1 · · · an] matrix with the vectors ai, i = 1, . . . , n as columns
[[. . .], . . . , [. . .]] matrix as a list of rows
At transpose of A where A is a matrix or a vector
I identity matrix
x1, . . . , xd factors, variables, indeterminates
d 1. number of independent factors

2. number of variables
3. number of indeterminates

s number of xi’s if the algebra is emphasised
N 1. sample size

2. number of design points
3. number of support points

k, K fields of coefficients
for example, Q, R, Q(θ), transcendental extension,
Q(

√
2), algebraic extension
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Notation for Gröbner bases

k[x1, . . . , xs] ring of polynomials in x1, . . . , xs
and with coefficients in k

xα = xα1
1 . . . xαs

s monomial in k[x1, . . . , xs]
p(x1, . . . , xs) polynomial in k[x1, . . . , xs]
τ , �, �τ term-ordering
xi1 � . . . � xis initial ordering on the indeterminates
τ(xi1 � . . . � xis) emphasis on the initial ordering
LTτ (p(x)) leading term of the polynomial p

with respect to the term-ordering τ
Ideal (g1, . . . , gh) ideal of k[x1, . . . , xs] generated by g1, . . . , gh
〈g1, . . . , gh〉
Variety(I) set of zeros of all polynomials in I
Ideal(V ) set of all polynomials vanishing at V
Variety(f1, . . . , fl) set of common roots of fi, i = 1, . . . , l
Rem(f),Rem(f,G) 1. normal form of f with respect to

the Gröbner basis G
2. remainder of the division of f with respect
to the set of polynomials G

Notation for experimental design

D, DN 1. experimental design
2. support for a discrete distribution

a, x design point
x(i), (x(i)1, . . . , x(i)d) ith design point for i = 1, . . . , N
X design region
Estτ (D) estimable terms with respect to τ and D
F polynomial regression vector
Z = [f(x)]x∈D,f∈F design matrix for a model with support F

and a design D;
the orderings on D and F carry over to Z

ZtZ information matrix
y = (y1, . . . , yN ) responses, values at the support points
θ, c, b, a parameters or coefficients
k[x1, . . . , xd]/ Ideal(D) quotient ring
k[x]/ Ideal(D)
L list of exponents of a vector space

basis of k[x1, . . . , xd]/Ideal(D)
L0 L \ {(0, . . . , 0)}
L′ L′ ⊆ L
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Notation for logic and reliability

B(∨,∧,− , 0, 1) Boolean algebra
∨ maximum, union
∧ minimum, intersection
∅ empty set
D2d 2d full factorial design
D \D2d , D̄ complementary set of D ⊂ D2d

fa(x) polynomial indicator function of a ∈ D2d

fD(x) polynomial indicator function of D ⊂ D2d

E(f) mean value of f
� symmetric difference operator

Notation for probability and statistics

D, Ω support of a probability space
D� support of an image probability
Ai elementary event
A event
fA indicator function of the event A
L(D,K), L(D), L the set of functions from D to K
X function in L(D)
P probability
P0 uniform probability
K the constant in the exponential model
K(Φ), K(θ) cumulant generating function
E0 (X) expectation of X with respect to P0

EP (X) expectation of X with respect to P
mα raw moments E0 (Xα)
θα θ-parameters of a probability
µα µ-parameters EP (Xα)
pi p-parameters P (a(i))
ψα ψ-parameters in exponential models
ζα ζ-parameters: ζα = exp(ψα)
R three-dimensional multi-array

where Rem
(
Xα+β

)
=
∑
γ∈LR(α, β, γ)Xγ

R(β) matrix [R(α, β, γ)]γ,α∈L
r(δ, γ) R(α, β, γ) with δ = α+ β
Q(α, β), α, β ∈ L E0

(
Xα+β

)
=
∑
γ∈L r(α+ β, γ)mγ





CHAPTER 1

Introduction

1.1 Outline

One of the most basic issues in statistical modeling is to set problems up
correctly, or at least well. This means, typically, that a sample space needs
to be defined together with some distribution on this sample space with
some parameters. After that one can decide if the parameters or even the
form of the distribution are known, and, given the motivation and resources,
enter into full-blown statistical inference. Great care needs to be taken with
data capture or, to put it more precisely, with experimental design, if the
model is to be properly postulated, tested and used for prediction.
Some of the questions which need to be addressed in carrying out these

operations are intrinsically algebraic, or can be recast as algebraic. By
algebra here we will typically mean polynomial algebra. It may not at first
be obvious that polynomials have a fundamental role to play.
Here is, perhaps, the simplest example possible. Suppose that two people

(small enough) stand together on a bathroom scale. Our model is that the
measurement is additive, so that if there is no error, and θ1 and θ2 are the
two weights, the reading should be

Y = θ1 + θ2

Without any other information it is not possible to estimate, or compute,
the individual weights θ1 and θ2. If there is an unknown zero correction θ0
then Y = θ0 + θ1 + θ2 and we are in worse trouble.
In a standard regression model we write in matrix notation

Y = Zθ + ε

and our ability to estimate the parameter vector θ, under standard theory,
is equated with “Z is N × p full rank” or Rank(Z) = p < N where θ
is a p-vector and N is the number of design points. An example is the
one-dimensional polynomial regression

Y (x) =
p−1∑

j=0

θjx
j + εx

Then, if the experimental design consists of p distinct points a(1), . . . , a(p),
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the square design matrix

Z =
[
a(i)j

]
i=1,...,p;j=0,...,p−1

has full rank, and for submodels with fewer than p terms, the Z-matrix
also has full rank.
Algebraic methods have been used extensively in the construction of de-

signs with suitable properties. However, particularly in the construction
of balanced factorial designs with particular aliasing properties, abstract
algebra in the form of group theory has also been used to study the iden-
tifiability problem. Most students and professionals in statistics will recall
a course on experimental design in which Abelian group theory is used in
the form of confounding relations such as

I = ABC

and unless they are experts in experimental design, they may have remained
somewhat mystified thereafter. We return to this example in Section 1.3.
Let us consider a simple example. Here is a heuristic proof that there is

a unique quadratic curve through the points (a(1), y1), (a(2), y2), (a(3), y3)

yi = r(a(i)), i = 1, 2, 3

We can think of a(1), a(2), a(3) as the points of an experimental design
at which we have observed y1, y2, y3, respectively, without error. We also
assume that a(1), a(2), a(3) are distinct.
Define the polynomial

d(x) = (x− a(1))(x− a(2))(x− a(3))

whose zeros are the design points. Take any competing polynomial, p(x),
through the data that is such that p(a(i)) = yi (for i = 1, 2, 3). Write

p(x) = s(x)d(x) + r(x)

where r(x) is the remainder when p(x) is divided by d(x). Now we can
appeal to algebra and say that, given the polynomial p(x), r(x) is unique.
But it is clear from the equation that

yi = p(a(i)) = r(a(i)), (i = 1, 2, 3)

since by construction d(a(i)) = 0, i = 1, 2, 3.
The polynomial p above can be interpreted in two ways: (i) as a contin-

uous function with value yi at the point a(i) and (ii) as a representation of
the function defined only on the design points and again with value yi at
a(i) (for i = 1, 2, 3). The first way is very convenient when we do regression
analysis and thus we call p an interpolator. The other interpretation is more
suited for applications in discrete probability.
Here we have tried to solve an identifiability problem directly by exhibit-

ing a minimal degree interpolator rather than check the rank of a Z-matrix.
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There is a crucial point to make: all the operations were carried out with
polynomials.
The same argument applies for polynomial regression of all orders in one

dimension. However, a very important issue for this book is that if we are
to use this argument for x in higher dimensions, then we need to cope with
the fact that representation of points as solutions of equations, the opera-
tion of division and the remainders themselves are not, in general, unique
in higher dimensions. The representation of discrete points as the solution
of polynomial equations is to treat them as zero-dimensional algebraic va-
rieties. The division operation becomes a quotient operation and we have
jumped into algebraic geometry. The set of all polynomials which are zero
on a variety (in this case, a set of points) has the algebraic structure of
an ideal. Strictly speaking, the quotient operation uses the ideal, not the
variety. The use of Gröbner bases will help throughout.
Elementary probability is not immune from this treatment. Consider a

random variable X whose support is a(1), a(2), a(3). What was an experi-
mental design, above, is now a support. Since X lives only on the support,
we can write (with probability one)

(X − a(1))(X − a(2))(X − a(3)) = 0

Expanding we obtain

X3 = (a(1) + a(2) + a(3))X2−
(a(1)a(2) + a(1)a(3) + a(2)a(3))X + a(1)a(2)a(3)

Taking expectation and letting the non-central moments of X be µ0 = 1,
µ1 = E (X), µ2 = E

(
X2
)
, . . ., we have

µ3 = (a(1) + a(2) + a(3))µ2

− (a(1)a(2) + a(1)a(3) + a(2)a(3))µ1

+ a(1)a(2)a(3)
µ3+k = (a(1) + a(2) + a(3))µ2+k

− (a(1)a(2) + a(1)a(3) + a(2)a(3))µ1+k

+ a(1)a(2)a(3)µk

(1.1)

We can, in this way, express any higher-order moment as a linear function
of µ0, µ1, µ2. This is an example of what we shall call moment aliasing.
This small example points to several levels of the use of polynomial

algebra in statistics. The first level is to set up the machinery for handling
sets of points in many dimensions. These points will be thought of first as
an experimental design D and then, when we do probability, as the support
of a distribution. Of course, the problem is then different. It is the algebra
which is, identical, and to emphasize this, we use the same letter D when
the set of points is a support. We will cover at some length all the issues
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to do with description of varieties, ideals, quotient operations and so on.
This occupies Chapters 2 and 3. Chapter 5 studies the algebra of random
variables over a finite set of points. This is the second level.
The third level is to interpolate the probability masses for our distribu-

tion on the support D. Since the algebra has already told us how to set
up interpolators, this is now straightforward, except that probabilities are
non-negative and must sum to one. Still at this level we have two basic
alternatives: to interpolate the raw probabilities or to interpolate their log-
arithm. For example, suppose we have a two-state (binary) random variable
taking the values in D = {0, 1} with probabilities 1− q and q, respectively:
a Bernoulli random variable. The raw interpolator is

p(x) = 1− q + (2q − 1)x

whereas the interpolator of the logarithm, after exponentiation, gives

p(x) = exp
(
log(1− q) + log

(
q

1− q

)
x

)

The second of these is the usual exponential family representation of the
Bernoulli.
The fourth level of algebraisation, and perhaps the most profound, arises

from noticing that when the support D lies at integer grid points, an ex-
ponential term such as eψ1x1 can be written ζx1

1 where

ζ1 = eψ1

Using this trick, we can rewrite models in the exponential form as polyno-
mials. For the Bernoulli, let ψ0 = log(1 − q) and ψ1 = log

(
q

1−q
)
. Then,

setting ζ0 = eψ0 and ζ1 = eψ1 we have the representation

p(x) = ζ0ζ
x
1

This coincides with the familiar form p(x) = qx(1 − q)1−x. We shall also
discuss this form, which is closely related to the work of Diaconis and
Sturmfels (1998) on toric ideals.
Note that we have been a little lazy with the notation here. All the forms

of p(x) have a different structure but agree numerically on D.
Much of the real usefulness of algebra in statistics comes from the inter-

play between these different parametrisations. We shall also need another
parametrisation in terms of moments. This is made harder by the fact that,
typically, statistical models or submodels are obtained by imposing restric-
tions on the parameters. We shall define an algebraic statistical model as
one which adopts one of these representations and for which the restric-
tions on the parameters are themselves polynomial. However, and this is
the most complex issue in the book, the forms of these submodels may
be different depending on the parametrisation. Only sometimes can they
be perfectly linked. An important example is the independence condition,
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which forces factorisation of the raw polynomial interpolators, maps to ad-
ditivity inside the exponential representation and factorisation in the ζ and
qx forms. Conditional independence, as used in Bayes networks, also has
this multiple representation. Chapters 5 and 6 discuss all these issues.
The book can be seen from different angles and we are grateful to a re-

viewer for making us more aware of this. The ambitious angle, and more
relevant to researchers in statistics, is to rewrite the foundations of discrete
probability and statistics in the language of algebraic geometry. We have
only partly succeeded in doing this. There is still much to be done, particu-
larly in sorting out fundamental issues arising from submodels discussed in
the last chapter, both theoretically and computationally. This effort must
surely draw on the important work of Andrews and Stafford (2000) on
general application of computer algebra to statistics.
The more modest objective in which we hope to have succeeded is to

enlarge the kitbag of tools available to the statistician. The Gröbner ba-
sis method in experimental design can now be used routinely, and is by
the authors, to investigate the identifiability of experimental design/model
combinations in real applications. The use of the methods in statistical
modeling should also proceed rapidly. After the seminal work by Diaconis
and Sturmfels (1998), there have been advances in using Gröbner basis
methods for Monte Carlo style sampling on contingency tables, notably
by Dinwoodie (1998). Promising ongoing work on the use of Gröbner ba-
sis methods in Bayes networks is being carried out by J. Q. Smith and
R. Settimi. We also include in Section 4.5 work by the authors and other
collaborators on reliability on binary (two-level) factorial design.

1.2 Computer Algebra

Several packages for symbolic computation and Gröbner basis computation
are available: CoCoA, Maple, Mathematica and GB, to mention a few. We
have used mostly Maple and CoCoA. Some points need to be made about
these packages.
The package CoCoA (COmputations in COmmutative Algebra, freely

available at http://cocoa.dima.unige.it) is specially developed for re-
search in algebraic geometry and commutative algebra. Thus it is faster
than most other software in computing Gröbner bases, although at times
not intuitive, and it allows more refined computations. The interface needs
further development and the use of unknown constants is not implemented.
Nevertheless in some cases ad hoc tricks can be used to force some indeter-
minates to play the role of unknown constants. An example is the case of
complex numbers for which an indeterminate i is introduced to represent
the complex unit. For details see Caboara and Riccomagno (1998).
Robbiano and other members of the CoCoA team are very active in the

research area described in Chapters 2 and 3 of this book. They concentrate



6 INTRODUCTION

mainly on links to algebraic geometry with forays into statistics (Robbiano
and Rogantin (1998), Caboara and Robbiano (1997)), while the authors are
led by applications in statistics with some expeditions into the mathematics
and computation.
Maple (University of Waterloo, Canada http://www.maplesoft.com)

is a general purpose package for symbolic computations. It is quite fast,
simple to use and with a good online help. It has a very good interface,
allows the use of unknown constants or free parameters, but it is slower than
CoCoA for the specialized application described here. Maple V-5 includes
the package Groebner for doing Gröbner basis computation, and allows the
use of unknown constants and user-defined term-orderings.
Sometimes our examples will be over the set of integers, Z, which is not a

field. Gröbner basis theory has a counterpart for polynomials with integer
coefficients, but it is more expensive. For example, in CoCoA, when the ring
Z[x1, x2] is input, a message appears warning that G-basis-related compu-
tations could fail to terminate or can be wrong. However, Z is embedded
in Q, and one can work with rational coefficients and multiply everything
out to obtain integers. On other occasions one has to work with a finite
set of coefficients, say Zp. For p, a prime integer, Zp forms a field and the
algebraic theory of Gröbner bases is similar to that over rational numbers.
In other cases, such as the trigonometric case (see Section 3.14), difficulties
arise from the fact that the sine and cosine of rational values are typically
irrational numbers and thus the coefficient field is not embeddable in Q. Ad
hoc procedures have been considered based on simple algebraic extensions
of rational numbers.
As mentioned, the authors prefer to use Maple and CoCoA. Lists of soft-

ware that include routines to compute Gröbner bases are maintained at
http://SymbolicNet.mcs.kent.edu/ and http://anillos.ugr.es/. We
should mention: Matematica for its popularity, REDUCE written in LISP
and whose main characteristics are code stability, full source code availabil-
ity and portability, and AXIOM, which takes an object-oriented approach
to computer algebra and its overall structure is strongly typed and hi-
erarchical. Among the freely available software there is GROEBNER (at
ftp.risc.uni-linz.ac.at) developed at RISC-Linz by W. Windsteiger
and B. Buchberger, Macaulay2 (http://www.math.uiuc.edu/Macaulay2/)
developed by D. Grayson and M. Stillman to support research in alge-
braic geometry and in commutative algebra. The package SINGULAR
(http://www.singular.uni-kl.de/) is advertised as the most powerful
and efficient systems for polynomial computations with a kernel written in
C++.
Next we anticipate some notions from Chapter 2. Historically a first ap-

plication of Gröbner bases is as polynomial system solver in that it can
rewrite a system of polynomial equations in an equivalent form which is
easier to solve. Equivalent means with the same set of solutions. For ex-



COMPUTER ALGEBRA 7

ample, if the system has a finite number of solutions, there is a Gröbner
basis including a polynomial in only one indeterminate, a polynomial in
that indeterminate and another one, and so on. In this way the system can
be solved by backward substitution. The great advantage of Gröbner bases
with respect to, say, numerical methods for solving systems of polynomial
equations, is that it can also be used when the system has infinitely many
solutions. All the solutions are returned but in a parametric, or implicit,
form, which sometimes seems even more complicated than the original. This
is why it is generally recommended to couple Gröbner basis with numerical
methods when used as system solver.
In this book we are concerned with two slightly different algebraic aspects

which use the same Gröbner basis techniques. 1. We know the solutions (so
to speak) and are interested in determining the set of polynomials inter-
polating them. Then, Gröbner basis methods return a basis of the set of
functions defined over the solutions. 2. We have a system of polynomial
equations and would like to check whether there are some algebraic re-
lations. That is, we need to rewrite the system in a different form. The
operations we allow are sums of elements in the polynomial set consid-
ered and products with any polynomial. This leads to the definition of a
polynomial ideal for which we refer to the main text.

1.2.1 A quick introduction to Gröbner bases

A polynomial, in one or more variables, is a linear combination of mono-
mials. Thus 1 + 2x1 + 3x2 + 4x1x2 is a polynomial and 1, x1, x2, x1x2 are
monomials.
On the set of integer numbers there is one natural total order, the one

we all know. The set of monomials in one indeterminate, x, inherits such
an order, thus x is lower than x3 and 1 = x0 is lower than xα for all α
positive integers. We do not consider negative integers.
In more than one dimension the uniqueness of a natural way of order-

ing points on the (non-negative) integer grid is lost. The same is valid for
monomials in more than one indeterminate. In Chapter 2 monomial or-
derings (also called term-orderings) are properly defined. For the moment
we only observe that a term-ordering corresponds to a total order on the
integer grid and is compatible with cancellation of monomials. There are
orderings on the integer grid that do not correspond to any term-ordering.
The most common term-ordering is the lexicographic ordering. In three

dimensions x, y and z, first fix z larger (in the ordering) than y and y larger
than x. We write z � y � x and talk of initial ordering. All monomials
of the type xα are lower than any monomial involving y and/or z and the
monomials xα are ordered according to the one-dimensional ordering. Next
come the monomials with the y indeterminate at first degree, that is xαy,
which are again ordered according to the one-dimensional ordering. After
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Figure 1.1 Example of degree reverse lexicographic term-ordering in two dimen-
sions.

that we have the monomials xαy2. After all the monomials xαyβ , for α and
β non-negative integers, it is the turn of the monomials including the z
indeterminate.
The degree reverse lexicographic term-ordering is a term-ordering often

used. An example in two dimensions is given in Figure 1.1. Monomials on
a line parallel to y = −x are ordered in a linear fashion according to the
ordering in one dimension and going in the direction bottom to top, that is
xα is smaller than yα. Monomials on lines closer to the origin are smaller
than monomials on lines far away. In higher dimensions, hyper-planes play
the role of lines. For a definition see Section 2.3.
Once a term-ordering is chosen, the largest term of a polynomial is well

defined and is called its leading term.
Consider the system of polynomials

{
yx− z
x2 − z

(1.2)

The associated system of equations is obtained by equating to zero the
two polynomials. A quick computation shows that there are two sets of
solutions




x = 0
y = y
z = 0

and




x = y
y = y
z = y2

The following systems of polynomial equations have the same solutions,
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that is they are algebraically equivalent,

{
(y − x)x = 0
z − x2 = 0




yx− z = 0
z(y − x) = 0
z − x2 = 0

The corresponding two sets of polynomials are two different Gröbner bases
of the ideal generated by Equation (1.2) with respect to two different term-
orderings. That is the lexicographic ordering with initial ordering z � y � x
and the degree reverse lexicographic term-ordering with the same initial
ordering, respectively. The leading terms are {yx, z} and {yx, zy, x2}.
Looking at the solutions of the systems, one is tempted to say that an

equivalent set of polynomials is
{
x− y
z − y2 (1.3)

But it cannot be retrieved from the polynomials in (1.2) using sums and
products of polynomials. That is, this last system is not algebraically equiv-
alent to the others. The solution (0, 0, 0) is clearly given in (1.2) while
in (1.3) it is deduced from the solution x = y, z = y2 for y = 0. This
phenomenon is referred to as the multiplicity of a solution.
Roughly speaking, Gröbner basis computation allows us to rewrite the

system (1.2) without losing or adding solutions, by having the correct set
of leading terms. Namely, a polynomial set G is a Gröbner basis for a set of
polynomials F and with respect to a term-ordering if the set of polynomials
generated by the leading terms of F is equal to the analogous set generated
by the leading terms of G. The elements of the set generated by the polyno-
mials {f1, . . . , fs} are the polynomials

∑s
i=1 hifi, where the hi’s are generic

polynomials. Note the role of a term-ordering in the definition of Gröbner
bases. The set of polynomials F = {f1 = yx − z, f2 = x2y − z} does not
form a Gröbner basis with respect to the lexicographic term-ordering with
initial ordering z � y � x. Call this term-ordering τ . Indeed yx cannot be
obtained from the leading terms of f1 and f2, which is z for both f1 and
f2, but it is the leading term of f1 + f2. The (reduced) Gröbner basis of F
with respect to τ is given above. There is an algorithm to compute Gröbner
bases given a set of polynomials and a term-ordering which is described in
Section 2.12.3.
Having the right leading terms also helps in the division of polynomials.

Namely the division of a polynomial by a Gröbner basis has a unique
remainder, while in general this is not true. The division of a polynomial f
by a set F is a way of rewriting f as a polynomial combination of elements
of F in such a way that we are left with a reminder whose leading term
is not divisible by the leading terms of the polynomials in F . For example
consider f = z. The division of f by f1 and f2, with respect to τ , gives the
reminder yx if we divide first by f1, indeed f = (−1)f1+xy. But if we first
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Table 1.1 The 23−1 fractional factorial design.

A B C

1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

divide by f2 and then by f1 we obtain f = (−1)f2 + x2 where now x2 is
the remainder. Fortunately when we divide f with respect to the Gröbner
basis G, we do not need to consider with respect to which polynomial we
divide first, the reminder will always be the same, z itself in this example.

1.3 An example: the 23−1 fractional factorial design

In this section we outline the ideas and techniques presented in this book
on an example which we shall return to in the main text as well. Consider
the four points of the 23−1 fractional factorial design with levels ±1 in
Table 1.1 (see Box, Hunter and Hunter (1978) and Cox and Reid (2000)).
It is defined by the confounding relation ABC = I where A, B and C
are the factors and I is the identity. When we refer to the factors in the
classical framework, for example when using the mathematics of group
theory, we use capital letters. We use small letters a, b and c for factors in
our polynomial representation. Moreover some computer algebra software
require that indeterminates, the algebraic equivalent of factors, are a single,
small letter.
The rows in Table 1.1 are solutions of the following system of polynomial

equations, which defines the 23−1design




a2 − 1 = 0
b2 − 1 = 0
c2 − 1 = 0
abc− 1 = 0

(1.4)

The aliasing table in Table 1.2 is obtained by multiplying ABC = I by A,
B and C, respectively. Now, the system of polynomial equations originated
by substituting small letters in Table 1.2 has still the same set of solutions
as the system in (1.4). For the polynomials in the system so obtained,
namely abc − 1, bc − a, ac − b, ab − c, the first polynomial is larger than
the other three polynomials as its highest term is divided by the second-
order terms of the other three polynomials. In this sense it is redundant



AN EXAMPLE: THE 23−1 FRACTIONAL FACTORIAL DESIGN 11

Table 1.2 Aliasing table for the 23−1 design.

ABC = I
BC = A
AC = B
AB = C

and it can be substituted by the three polynomials a2−1, b2−1 and c2−1
which are of smaller order. The set of zeros of the system of polynomial
equations obtained equating to zero these new three polynomials is the 23

full factorial design.
The final set of equations so obtained forms a Gröbner basis





a2 − 1
b2 − 1
c2 − 1
bc− a
ac− b
ab− c

(1.5)

General methods to compute Gröbner bases from a set of polynomials are
given in Chapter 2.
In the classical theory, one would look at the aliasing table in Table 1.2

and deduce that the interaction AB is aliased to the linear factor C. That
is the effects of AB and C are confounded and both AB and C cannot be
terms in the same linear regression model. In more mathematical terminol-
ogy one says that AB and C are linearly dependent functions over the 23−1

design. The approach presented in this book develops this observation. The
theory of Gröbner basis automatises the process of finding a vector space
basis of the set of functions defined over the 23−1 design. From this vector
space basis it is easy to check whether two terms are confounded. This
saturated set of independent terms is formed by monomials, that is fac-
tors and interactions. It will be the basis with the terms smallest in some
sense which will be clear when in Chapter 2 the concept of term-ordering
is explained.
We show the process for determining this vector space basis for the 23−1

design. Consider the Gröbner basis in Equation (1.5) and consider the
largest terms of each of its polynomials, they are

LT =
{
a2, b2, c2, ab, ac, bc

}

The formalization of this process requires again the definition of term-
ordering. For the moment it is sufficient to say that, for example, in ab− c
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the term ab is larger than c because it represents a second-order interaction.
In some cases to be considered later it will be possible that a linear term
is larger than an interaction.
Now consider all the terms that are not divided by the monomials in LT.

They are listed below and they are four, exactly the number of points in
the 23−1 design:

1, a, b, c

The theory of Gröbner bases states that this is a set of linearly independent
functions over the 23−1 design. They can be used to build a linear regression
model.
In particular all the functions over the 23−1 design can be represented as

linear combinations of those four monomials, and a function f is written
as

f(x) = θ0 + θ1a+ θ2b+ θ3c

where x ranges over the points in the 23−1 design. Now probabilities are
functions and thus can be represented in this way, and the θ coefficients
are chosen so that

∑
x∈23−1 f(x) = 1. For example, the probability that

assigns mass 1/2 to the point (1, 1, 1), mass 1/4 to the point (−1, 1,−1),
and equal mass 1/8 to the other two points is the function

1/4 + 1/16a+ 1/8b+ 1/16c

The uniform probability is given by the constant function 1/4.
Random variables are again linear functions of 1, a, b, c, for example Y =

A+ B + C. The expectation of Y with respect to the uniform probability
can now be computed with linear operations as

E0 (Y ) =
∑

x∈23−1

Y (x) =
∑

(a,b,c)∈23−1

(a+ b+ c) = 0

Analogously, the second-order moment is

E0

(
Y 2
)
=

∑

x∈23−1

Y (x)2 =
∑

(a,b,c)∈23−1

(a+ b+ c)2 = 12

As mentioned previously the relation (1.1) further simplifies the computa-
tion of higher-order moments.
We conclude this section by computing the image probability of Y . Let

us start with the computation of the image support. Thus adjoin the poly-
nomial for Y , using small letter y, to the equations of the Gröbner basis of
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the 23−1 design 



a2 − 1
b2 − 1
c2 − 1
bc− a
ac− b
ab− c
y − (a+ b+ c)

(1.6)

The aim is to find a polynomial involving only y and not the indeterminates
a, b and c. That is to check whether y is algebraically independent from a,
b and c. The square of the last polynomial in (1.6) above gives

y2 + (a+ b+ c)2 − 2y(a+ b+ c)

and thus, using again the definition of y,

y2 − (a+ b+ c)2 = y2 − a2 − b2 − c2 − 2bc− 2ac− 2ab

Now a2 = b2 = c2 = 1 and bc = a, ac = b and ab = c, giving

y2 − 2y − 3 = (y + 1)(y − 3) = 0

This is the description of the image of Y . In Chapter 5 this process is
automatised by considering the Gröbner basis of the polynomials above
with respect to a so-called elimination term-ordering.
The image probability of Y takes values on the set D∗ = {−1, 3} and its

density with respect to the uniform distribution has the form of a polyno-
mial supported on {1, y}. Thus in generic form we can write

pY = θ0 + θ1Y

Because the support of pY is {1, y}, the density pY is fully known if the
first two moments E (Y α), α = 0, 1 are known. By using the conditions

Y 2 = 2Y + 3, E (Y ) = 0, and E∗ (Y ) =
−1 + 3

2
= 1 (the expectation with

respect to the uniform on D∗), we obtain the system
{
1 = E∗ (θ0 + θ1Y ) = θ0 + θ1

0 = E∗
(
θ0Y + θ1Y

2
)
= E∗ (θ0Y + θ1(2Y + 3)) = θ0 + 5θ1

which gives pY =
5
4
− 1

4
Y .

The polynomial setup presented here can be used to discuss many prob-
abilistic and statistical concepts. Much of this can be found in the main
text but still much work is left for the authors and the interested reader.
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(ed.) Proc. ISSAC ’97 , ACM Press, New York.

Collart S., Kalkbrener M., and Mall D. (1997) Converting bases with the Gröbner
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bases. Theoret. Comput. Sci. 134, 131–173.
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