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Preface
This book provides a comprehensive overview of the advanced techniques employed 
to create specialized sorbents with a wide range of functions, which can be used to 
enhance the separation and/or puri�cation of useful bioactive species like proteins 
and cells, heavy metal ions, dyes, etc. It illustrates some of the most ef�cient materi-
als promoted in recent decades for the separation processes. The main purpose of 
this book is to update the scienti�c information in a �eld of research that is growing 
dynamically. Thus, the latest information in the �eld of separation processes by spe-
cialized sorbents like monolith cryogels, composite hydrogels, magnetic composite 
adsorbents, metal-impregnated ion exchangers, molecularly imprinted polymers, 
and solid phase extraction by mixed mode sorbents are presented and compared 
with the authors’ results. Biobased polymer composites occupy a unique place in the 
dynamic world of new sorbents, and this book provides novel information on them. 
Readers will get updated information and an in-depth perspective on the design 
strategies, characterization, and application of novel sorbents. The material will also 
help researchers in the design of their projects on specialized sorbents for the separa-
tion and/or puri�cation of ionic species. The chapters in this book have been contrib-
uted by a team of renowned scientists from around the world whose expertise will 
enlarge the visibility of some of the most effective sorbents and will provide readers 
an overall view on the ef�ciency of different separation techniques.

Chapter 1 presents composite hydrogel materials consisting of cross-linked 
homo- and copolymers of acrylamide and N-isopropylacrylamide with embedded 
clay minerals, metal nanoparticles, drugs, and proteins. Special attention has been 
paid to the metal complexes of linear polyampholytes, cross-linked polybetaines, 
and macroporous amphoteric gels. Molecularly and ion-imprinted polymers focus-
ing on selective recovery of transition and rare earth metal ions are presented. The 
potential applications of composite hydrogel materials in the oil industry for clean-
ing the internal surface of main pipes, in catalysis as metal nanoparticles immobi-
lized within hydrogel matrices, and in medicine and biotechnology as controlled 
release of drugs and proteins are also outlined.

The progress during recent decades in the �eld of af�nity chromatography is pre-
sented in Chapter 2. Af�nity chromatography is a very ef�cient method of protein 
puri�cation. Recently, dye-ligand af�nity chromatography and immobilized metal 
af�nity separation have gained considerable attention in the puri�cation of proteins, 
both in laboratory and large-scale applications, assuring higher speci�city, purity, 
and recovery in a single chromatographic step, as well as cost ef�ciency and safety. 
Lately, cryogel materials have been considered as a novel generation of stationary 
phases in separation science. They have proven to be highly ef�cient in protein 
puri�cation with many advantages, including large pores, short diffusion path, low 
pressure drop, and very short residence time for both adsorption and elution. These 
unique features make them attractive matrices for the chromatography of biomol-
ecules, viruses, plasmids, and even whole cells.



xiv Preface

Monoliths are uniform matrices without interparticular voids, having signi�cant 
importance as a stationary phase in different modes of chromatography. The pores 
in monoliths form interconnected channels across the matrix, which provides high 
permeability for the convective �ow of the mobile phase and a large surface area for 
the binding of analytes. The advantages of macroporous monoliths are discussed 
in Chapter 3. Macroporous monoliths can be composed of silica, polymer, metal 
oxides, and carbon-based materials. Unlike conventional columns, they can easily 
be chemically modi�ed, and a single monolith can have different functionalities in 
the separation of many analytes. Macroporous monolithic matrices provide fast, 
ef�cient, and easy separation of large biomolecules such as proteins, nucleic acids, 
bacteria, mammalian cells, or particulate matter with low mass transfer resistance. 
This chapter describes the different types of monoliths and their working principles 
and applications in particulate/cell separations.

Over the last decade, a special area of focus has been the removal of heavy metals 
and dyes from the environment because of their nonbiodegradability and long-term 
toxicity, which make them very dangerous for human health. Biosorbents derived 
from polysaccharides like chitosan and alginate attracted a strong interest as a cost-
effective alternative to the existing sorbents like activated carbon and synthetic ion 
exchangers. Due to high adsorption capacity, chitosan and alginate have been exten-
sively used as biosorbents in wastewater remediation. The advantages and perspec-
tives of using specialized polysaccharide-based composites in the removal of heavy 
metals and dyes are presented in Chapters 4 through 6 and in Chapters 9 and 11.

Traditional hydrogels from synthetic and/or natural polymers often have some 
limitations, such as low mechanical stability and poor biodegradability, which restrict 
their practical applications. Recently, polysaccharide-based composite hydrogels, 
a new group of materials at the interface of hydrogels, polymer/clay nanocomposites, 
and polysaccharides, have attracted much attention due to their unique properties. The 
latest developments on this type of hydrogels are reviewed in Chapter 4. The appli-
cations of novel composite hydrogels in the removal of pollutants, including heavy 
metals, dyes, and ammonium nitrogen in water, are reviewed. Due to the synergis-
tic effect among polysaccharides, vinyl monomers, and clay minerals, many of the 
physicochemical properties, such as swelling ratio and rate, thermostability, and gel 
strength of composite hydrogels, are superior to their counterparts.

Chapter 5 is focused on the sorption of heavy metals by magnetic adsorbent 
particles, the so-called magnetic beads. The facile separation of magnetic sorbents 
from the aqueous phase is the main advantage, which differentiates them from the 
traditional adsorbents. Their ef�cient removal in a magnetic �eld followed by regen-
eration and reuse decreases the overall cost of water treatment. Due to their high 
applicative potential, composite materials containing iron oxide incorporated in 
functional polymeric supports are intensely studied. This chapter presents recent 
developments in the very important �eld of the magnetic separation of heavy metals 
by composite biosorbents.

Synthesis and characterization of some biosorbents based on chitosan, alginate, 
and cellulose, as biopolymer matrix, embedded with synthetic or natural zeolites and 
their applications for the removal of heavy metal ions and the separation of aqueous–
organic mixtures are summarized in Chapter 6. Removal of dyes by chitosan–zeolite 
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composites are also discussed. The sorption capacities and the pervaporation separa-
tion performances of biopolymer–zeolite composites are compared with those of raw 
zeolite, pristine biopolymer, or other biopolymer-based composites.

In recent decades, the wastewater treatment industry has identi�ed the discharge 
of nutrients, including phosphates and nitrates, into waterways as a risk to natural 
environments due to the serious effects of eutrophication of the water bodies. An 
abundance of algal blooming in eutrophic water bodies can deplete dissolved oxy-
gen in water, causing �sh deaths. Accordingly, it is necessary and urgent to explore 
effective techniques for phosphate removal from wastewater. The development 
and performance of new phosphate-selective sorbents, referred to as hybrid anion 
exchangers (HAIX), are presented in Chapter 7. HAIX combines the durability 
and mechanical strength of polymeric anion exchange resins with the high sorption 
af�nity of hydrated ferric oxide toward phosphate.

Different chemicals like medicines, pesticides, plastics components, or industry 
pollutants, all toxic to the endocrine system, are found in natural waters. These 
substances are poorly removed from solutions by conventional methods. The use 
of molecularly imprinted polymers offers the possibility of removing them as they 
have a high af�nity and selectivity toward templates. Chapter 8 presents the meth-
ods of synthesis of such sorbents with a focus on their use in hybrid systems, 
which seems to be a promising alternative for the removal of endocrine-disrupting 
compounds.

Chapter 9 describes the sorption mechanisms and performances of biopolymers 
(chitosan and alginate) as a function of the type of functional groups, the pH, the 
composition of the solution, as well as the size and morphology of particles. Sorption 
may proceed through chelation/complexation, ion exchange/electrostatic attraction, 
or the formation of a ternary complex. The choice of the biopolymer depends on 
the target metal and the metal speciation. The versatility of these materials is of 
great interest for developing novel sorbents with improved diffusion properties, 
enhanced hydrodynamic behavior, and innovative application modes. In  addition, 
these  biopolymers can be used for encapsulating reactive compounds (ionic liquids, 
extractants, ion exchangers) in order to improve the reactivity, selectivity, or sorp-
tion ef�ciency of these materials, pro�ting from the possibility to condition these 
composite sorbents under different forms (beads, membranes, foams, etc.). Hybrid 
materials (e.g., metal-loaded biopolymers) can also be used to design new materials 
and new applications. Some examples are discussed that show how biopolymers can 
be given fresh life after metal binding.

Mixed-mode polymeric sorbents that enhance selectivity and capacity of extrac-
tion in a single material are described in Chapter 10. Different aspects of these materi-
als are described, including their synthesis, morphological and chemical properties, 
as well as their application in solid-phase extractions (SPE). SPE protocols for each 
type of mixed-mode sorbents (strong/weak and cation/anion-exchange materials) are 
also discussed, since the protocols are crucial for the success of this kind of material. 
Applications of sorbents in different types of matrices are presented compared with 
commercial sorbents.

Single-network hydrogels have poor mechanical properties and slow responses at 
swelling. Various strategies, including the preparation of interpenetrating polymer 
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network (IPN) hydrogels, have therefore been developed to remediate these weak 
points. The most signi�cant classes of IPN composite hydrogels and their applica-
tions, mainly in the separation processes of dyes, heavy metal ions, and liquids, are 
presented in Chapter 11. Synthesis parameters such as cross-linker ratio, monomer 
concentration, and synthesis temperature are the key factors that determine the prop-
erties of the semi-IPN and IPN hydrogels, such as interior morphology, swelling 
kinetics, mechanical strength, etc. Sorption kinetics and reusability of IPN com-
posite hydrogels are further enhanced by the synthesis of IPN hydrogels under the 
freezing temperature of the solvent (cryogels).

A rational approach for building molecular channels in hybrid organic–inorganic 
materials via the inorganic (sol–gel) transcription of dynamic self-assembled super-
structures is presented in Chapter 12. The basic and speci�c molecular information 
encoded in the molecular precursors results in the generation of tubular superstruc-
tures in solution and in a solid state, which can be frozen in a polymeric hybrid 
matrix by the sol–gel process. These systems have been successfully employed to 
design solid dense membranes that function as ion channels and to illustrate how a 
self-organized hybrid material performs interesting and potentially useful transport-
ing functions.

Furthermore, the book contains numerous illustrations and tables that will guide 
readers in advanced separation procedures. In conclusion, this book focuses on a 
variety of advanced techniques available for separation and/or puri�cation of tar-
get ionic species and addresses the needs and challenges for future research in this 
growing �eld.
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2 Advanced Separations by Specialized Sorbents

1.1 INTRODUCTION

At present, composite hydrogel materials have attracted considerable interest in 
research and industrial spheres (Kudaibergenov et al. 2007, Pavlyuchenko and 
Ivanchev 2009). Composite polymer hydrogels consist of at least two components 
that exhibit a synergistic effect. According to the canons of thermodynamic com-
patibility, there are many possible structures of composite hydrogels starting from 
complete phase separation and ending to formation of structures consisting of poly-
mer matrix and nano-, micro-, and macrosized inclusions. The nature of interaction 
between the components can have covalent, ionic, and donor–acceptor character and 
can be stabilized by hydrogen bonds, hydrophobic interactions, and entanglement of 
macromolecular chains producing interpenetrating and semi-interpenetrating poly-
mer networks (IPNs) (Wu et al. 2006, Zhang et al. 2005). Due to their composite 
structure and unique properties such as improved mechanical, thermal, electrical, 
and optical characteristics, they have been found to have a wide application in 
medicine, membrane technology, optical engineering, and catalysis (Frimpong et al. 
2006, Lao and Ramanujan 2004, Lu et al. 2003, Sershen et al. 2000, 2005). This 
chapter is devoted to composite hydrogel materials based on cross-linked homo- and 
copolymers of acrylamide (AAm) and N-isopropylacrylamide (NIPA) within which 
inorganic nano- and microparticles, polymer-protected metal nanoparticles, pro-
teins, drugs, and low-molecular-weight ligands are immobilized. Physicochemical, 
physicomechanical, and catalytic properties and volume-phase transition (VPT) of 
composite hydrogel materials have been studied. Application aspects of composite 
hydrogel materials in oil industry and catalysis, for wastewater puri�cation, and as 
drug delivery systems are also outlined.

1.2  IMMOBILIZATION OF NANO- AND MICROSIZED 
CLAY MINERALS INTO THE HYDROGEL MATRIX

1.2.1  PREPARATION AND CHARACTERIZATION OF ORGANIC–
INORGANIC COMPOSITE MATERIALS BASED ON 
POLY(ACRYLAMIDE) HYDROGELS AND CLAY MINERALS

The properties of hydrogels can be modi�ed by embedding inorganic materials, 
such as montmorillonite (MMT), bentonite, mica, silica, titanium and aluminum 
oxides, and sericite, within the gel matrix (Avvaru et al. 1998, Cheng et al. 2007, 
Kabiri and Zohuriaan-Mehr 2003, Kurokawa and Sasaki 1982, Lee and Yang 2004, 
Lin et al. 2001, Ray and Okamoto 2003, Starodoubtsev et al. 2000). The pioneering 
works to strengthen the mechanical properties of gel specimen by adding inorganic 
components were done by Haraguchi and colleagues (Haraguchi et al. 2003, 2013, 
Haraguchi and Li 2006, Haraguchi and Takehisa 2002). Gel sample made from MMT 
and NIPA is elastically stretched to about 10 times its original length (Haraguchi 
et al. 2002). Osada and colleagues (Gong et al. 2003, Nakayama et al. 2004, Tanaka 
et al. 2005) designed a series of double-network hydrogels with extremely high 
mechanical strength. This kind of nanocomposite hydrogel exhibited high transpar-
ency, high deswelling rate, and extraordinary mechanical properties with elongation 
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at break in excess of 103%. In an organic/inorganic network structure, the clay sheets 
will act as effective multifunctional cross-linkers through ionic or polar interactions. 
The layered structure of clay minerals and their ability to swell in water allow mono-
mers and polymer chains to diffuse into clay layers and act as additional cross-linker. 
The overall stability of composite materials directly depends on whether exfoliation 
or intercalation process takes place and on the choice of monomer or initiator that 
can be adsorbed to the clay surface (Abdurrahmanoglu et al. 2008, Essawy 2008, 
Jia et al. 2008, Xiang et al. 2006). Preparation of lightweight porous materials 
by templating hydrogels with a range of hydrophilic and hydrophobic scaffolding 
materials was explored (Rutkevičius et al. 2012). Submillimeter hydrogel slurries 
of polyacrylamide (PAAm) and gellan gum were templated with aqueous slurries 
of cement, gypsum, and clay–cement mixtures or alternatively dispersed in curable 
polydimethylsiloxane. After the solidi�cation of the scaffolding material, the evapo-
ration of a structured hydrogel produced porous composite material whose pores 
mimic the hydrogel mesostructure. This versatile hydrogel templating method can 
be applied to yield lightweight porous materials with a great potential for use in the 
building industry in heat and sound insulation panels, lightweight building blocks, 
porous rubber substitutes, and foam shock absorbers and as an alternative to aer-
ated concretes. The poly(acrylamide-co-acrylate)/rice husk ash hydrogel composites 
and a series of poly(acrylic acid-co-acrylamide)/kaolin composites are applied as 
soil conditioner and superabsorbent and serve as release carrier of urea fertilizer in 
agricultural industry (Cândido et al. 2013, Lianga and Liu 2007, Lianga et al. 2007).

The effect of silica nanoparticles on the linear viscoelastic response of model 
polyacrylamide hydrogel (PAAH) systems was examined (Kalfus et al. 2012). The 
removal of methylene blue (MB) cationic dye from its aqueous solution was performed 
with the help of chitosan-g-poly(acrylic acid) (CTS-g-PAAc)/MMT nanocomposites 
as adsorbent (Wang et al. 2008). The in�uence of pH value, MMT content (wt.%), 
weight ratio (w.r.) of acrylic acid (AAc) to CTS, and adsorption temperature on the 
adsorption capacity of the nanocomposite was investigated. The results showed that 
the w.r. of AAc to CTS of the nanocomposites has great in�uence on adsorption 
capacities and introducing a small amount of MMT could improve the adsorption 
ability of the CTS-g-PAAc. The adsorption behaviors of the nanocomposite showed 
that the maximum adsorption capacity is 1859 mg/g for CTS-g-PAAc/MMT with 
30 wt.% and w.r. of 7.2:1. The desorption studies revealed that the nanocomposite pro-
vided the potential for regeneration and reuse after MB dye adsorption. The synthesis 
of poly(acrylic acid)–bentonite–FeCo (PAAc-B-FeCo) hydrogel nanocomposite via 
ultrasound-assisted in situ emulsion polymerization was carried out (Shirsath et al. 
2011). Addition of exfoliated bentonite clay platelets and FeCo increased the strength 
and stability of the hydrogel and assisted the adsorption of an organic pollutant. The 
response of the nanocomposite hydrogel was evaluated using a cationic dye, crystal 
violet under a different temperature, pH, and cavitation environment. The optimum 
temperature was found to be 35°C, and basic pH at 11 was responsible for the higher 
adsorption of dye due to dissociation of COO− ions at higher pH.

Amphoteric semi-IPN nanocomposite hydrogels were prepared by graft polymer-
ization of AAc onto starch in cationic polyacrylamide (CPAM)/bentonite nanocom-
posite aqueous dispersion (Xu et al. 2008). CPAM was used as both an intercalating 
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agent to enlarge interlayer space and a linear polymer chain to fabricate the semi-IPN 
structure. X-ray diffraction (XRD) and TEM con�rmed a successful intercalation of 
CPAM into bentonite. The results showed that the hydrogel was of a high swelling 
and compressive strength even under water content of more than 99%.

Highly swollen AAm/2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) 
hydrogels and AAm/AMPS/bentonite composite hydrogels were prepared by free 
radical solution polymerization in aqueous solutions of AAm with AMPS and a clay 
such as bentonite and a multifunctional cross-linker such as ethylene glycol dimethac-
rylate (Kundakci et al. 2008). Highly swollen AAm/AMPS and AAm/AMPS/bentonite 
hydrogels were used in experiments on the sorption of water-soluble monovalent cat-
ionic dye such as Lauth’s violet (LV) (thionine). Swelling of AAm/AMPS hydrogels 
was increased up to 2,282%–12,603% in water and 921%–3,575% in LV solutions, 
while AAm hydrogels swelled 927% in water, and swelling of AAm/AMPS/bentonite 
hydrogels was increased up to 3,225%–15,421% in water and 1,360%–4,189% in LV 
solutions, while AAm/bentonite hydrogels swelled 828% in water.

Both clay minerals embedded within neutral or charged hydrogel networks and 
linear charged macromolecules that stabilize clay minerals exhibit excellent absor-
bance capacity with respect to metal ions (Saber-Samandari and Gazi 2013) and 
dye molecules (Nakamura and Ogawa 2013, Shirsath et al. 2013, Yang and Ni 2012) 
and as a controlled-release drug carrier (Kevadiya et al. 2011). The nanocomposite 
hydrogels have much greater equilibrium swelling ratio, much faster response rate 
to pH, excellent thermal responsibility, and signi�cantly improved tensile mechani-
cal properties and high storage modulus (Xiang et al. 2006, Zhang et al. 2009).

The composite hydrogel materials based on clay minerals, TiO2, SiO2, and 
PAAH were obtained by one-step in situ polymerization (Svetlichnyy et al. 2009a). 
As a result, the �exible, elastic, and mechanically stable composite materials 
were designed. Swelling–deswelling behavior, VPT, and physicochemical, physi-
comechanical, and thermal properties of composite hydrogels have been studied 
(Ibrayeva 2010, Zhumaly et al. 2013). The mechanism of formation of the compos-
ite structures can be represented as diffusion of AAm monomers into the layered 
clay structure. After monomer intercalation into the space of minerals and polym-
erization with simultaneous cross-linking, composite hydrogel materials are formed 
where nano- and microsized clay particles play the role of additional physical cross-
linking centers. It leads to a signi�cant increase in mechanical properties of com-
posite materials. The swelling degree of samples increases in the following order: 
PAAH/bentonite > PAAH/TiO2 > PAAH/SiO2 > PAAH/kaolin ≈ PAAH/MMT. 
For the PAAH/bentonite, PAAH/kaolin, PAAH/TiO2, and PAAH/SiO2 composites, 
the values of n that are between 0.6 and 0.94 correspond to an anomalous swelling 
mechanism, for example, non-Fickian diffusion. The effect of water–organic solvent 
mixture, pH, temperature, and ionic strength on the behavior of the composite mate-
rials was studied. Composite materials shrank in water–acetone and water–ethanol 
mixtures, as well as at high ionic strength of the solution, while changing of pH and 
temperature has no substantial in�uence. For the PAAH/kaolin and PAAH/benton-
ite composite hydrogels, the swelling degree decreased with increasing both the con-
tent of methylenebisacrylamide (MBAA) and bentonite, respectively. In the former 
case, it was connected with increasing of the density of chemical cross-links and, 
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in the latter case, physical cross-links. Scanning electron microscopy (SEM) images 
revealed that the morphology of composite materials is represented as �at surface, 
cracks, and micropores with an average diameter of 5–10 µm. The XRD patterns are 
characterized by amorphous halo from PAAH followed by smaller peaks from clay 
minerals that are embedded within hydrogel matrix. The Fourier transform infrared 
spectroscopy (FTIR) and Raman spectroscopy results revealed that composite mate-
rials have not been simply a mechanical mixture of two components; in contrast, 
they were stabilized by hydrogen bonds between NH2 groups of PAAH and oxygen 
groups of TiO2, SiO2, and aluminosilicates. The positive values of the enthalpy of 
mixing ∆Hm indicated that the swelling of PAAH/kaolin and PAAH/TiO2 in water 
had endothermic character. It was shown that the thermal decomposition of com-
posite hydrogel materials was shifted to a higher-temperature region in comparison 
with PAAH. The increase of kaolin quantity in PAAH volume led to reinforcing of 
mechanical properties of composite materials.

1.2.2  POTENTIAL APPLICATION OF COMPOSITE HYDROGEL MATERIALS AS 
“PIGS” FOR CLEANING OF THE INTERNAL SURFACE OF MAIN PIPES

Pipelines are used to transport the powders and �uids from one point to another. 
Pigging is an operation to remove debris or unwanted deposit buildup in a pipe-
line (Al-Yaari 2011, Jaggard and Allen 1977, Uzu et al. 2000). Debris, sand, and 
asphaltene–resin–paraf�n depositions (ARPDs) in a pipeline will result in a pressure 
buildup, and if no pigging exists, their buildup could continue to rise and will create 
greater back pressure on the line, causing higher maintenance on pumps, and the 
line could eventually become blocked. It is forecasted that the composite hydrogel 
materials may bear more external load than that of pure hydrogel. In contrast to ordi-
nary hydrogels, the composite materials consisting of hydrogels and clay minerals 
exhibit an improved physicomechanical property (Ibrayeva 2010, Svetlichnyy et al. 
2009b). The mechanical stability of the PAAH/kaolin sample in comparison with 
pure PAAH is shown in Figure 1.1.

The laboratory device for study of the model oil pipeline is as follows: A slightly 
swollen hydrogel plunger (not miscible with oil) is immersed into the pipeline to 

(a) (b) (c) (d)

FIGURE 1.1 Mechanical stability of PAAH/kaolin composite (a, b) and pristine PAAH 
(c, d) gels.
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separate the oil �ow. As the hydrogel “pig” moves along the pipe, it absorbs the 
water–saline solution and swells. The hydrogel swelling allows tight hydraulic seal-
ing to the pipe wall. This, in turn, leads to ef�cient removal of gas accumulations, 
ARPD, mechanical impurities, and mineralized water from the pipeline inner cavity 
(Figure 1.2).

In cleaning a model pipeline from ARPD, the PAAH/kaolin composite hydrogel 
that showed the best elongation at break, tensile strength, and Young’s modulus at 
15 wt.% of kaolin was used (Zheksembayeva et al. 2012). The effectiveness of clean-
ing of deposited paraf�ns from Kumkol and Usen oil �elds by composite hydrogel 
“pigs” ranges between 94% and 96% (Kudaibergenov et al. 2012a).

1.3  PHYSICOCHEMICAL AND CATALYTIC PROPERTIES OF 
POLYMER-PROTECTED AND HYDROGEL-IMMOBILIZED 
GOLD, SILVER, AND PALLADIUM NANOPARTICLES

1.3.1  STABILIZATION OF GOLD AND SILVER NANOPARTICLES 
BY HYDROPHILIC POLYMERS

Gold (AuNPs) and silver (AgNPs) nanoparticles have attracted signi�cant attention of 
researchers due to their unique optical, electrical, biomedical, and catalytic properties 
(Balasubramanian et al. 2010, Motoyuki and Hidehiro 2009, Shan and Tenhu 2007, 
Zhou et al. 2009). A lot of polymers possessing nonionic (Chung et al. 2012, Dai et al. 
2007, Morrow et al. 2009, Ram et al. 2011), anionic (Dorris et al. 2008), cationic 
(Chen et al. 2012a), and amphoteric (Li et al. 2010, Mahltig et al. 2010, Note et al. 
2007) nature are widely used as protecting agents of AuNPs and AgNPs in aqueous 
solution or organic solvents for preventing nanoparticle aggregation (Bekturov et al. 
2010, Ibrayeva et al. 2013).

The size of poly(N-vinylpyrrolidone) (PVP)-protected AuNPs ranging from 10 
to 110  nm was easily controlled by varying the concentration (0.01–10 g/dL) (Ram 
et al. 2011) or the average-number molecular weight of PVP (Mn = 10–350 kDa) 
(Yesmurzayeva et al. 2013). The shape, size, and optical properties of the AuNPs and 
AgNPs are tuned by changing the employed PVP/metal salt ratio (Hoppe et al. 2006). 
It is proposed that PVP acts as the reducing agent suffering a partial degradation during 
the nanoparticle synthesis. Two possible mechanisms are proposed to explain the reduc-
tion step: direct hydrogen abstraction induced by the metal ion and/or reducing action 
of macroradicals formed during degradation of the polymer. The initial formation of 

Oil

Oil

Gel

Water

FIGURE 1.2 Schematic representation of cleaning of inner part of pipeline from APRD and 
water by hydrogel “pigs.”
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the macroradicals might be associated with the metal-accelerated decomposition of low 
amounts of peroxides present in the commercial polymer. Gold catalysts have recently 
attracted rapidly growing interests due to their potential applicabilities to many reac-
tions of both industrial and environmental importance (Haruta 1997). Typical examples 
are the low-temperature catalytic combustion, partial oxidation of hydrocarbons, hydro-
genation of carbon oxides and unsaturated hydrocarbons, and reduction of nitrogen 
oxides (Haruta and Daté 2001). A recent review (Shiju and Guliants 2009) describes 
the size-, shape-, structure-, and composition-dependent behavior of AuNPs employed 
in alkylation, dehydrogenation, hydrogenation, and selective oxidation reactions for the 
conversion of hydrocarbons (with main emphasis on fossil resources) to chemicals. The 
perspectives of substituting platinum group metals for automobile emission control with 
gold were outlined by authors (Zhang et al. 2011).

1.3.2  IMMOBILIZATION OF POLYMER-PROTECTED AUNPS 
AND AGNPS WITHIN HYDROGEL MATRIX

Hydrogels are chemically stable and interlocked polymeric networks that retain vast 
amounts of water without dissolving; therefore, they are feasible for the prepara-
tion of metal nanoparticles in situ and readily applicable in the catalysis of various 
aquatic and nonaquatic reactions. The functional groups in the hydrogel network 
can act as both chelating and capping agents for metal nanoparticle preparation 
from metal ions and for their stabilization; thus, the metal particles are protected 
from the atmosphere hindering the oxidation/deactivation and aggregation, allowing 
an increase in their stability and longevity. Various synthesis methods have been 
reported to produce AuNPs–hydrogel composites (Dolya et al. 2013): (1) prepara-
tion of the nanoparticles and hydrogels, separate or in combination (Pardo-Yissar 
et al. 2001, Sheeney-Hai-Ichia et al. 2002); (2) mixing and polymerization of the 
preformed nanoparticles with monomer precursor(s) (Holtz and Asher 1997, Lee and 
Braun 2003, Sershen et al. 2000, 2001, Weissman et al. 1996); and (3) embedding of 
metal salts into a hydrogel matrix followed by a reduction process in the presence of 
reducing agents (Wang et al. 2004). The role of hydrophilic polymers in this system 
is to stabilize the metal nanoparticles and to prevent their aggregation, while the 
role of hydrogel matrix is restriction of diffusion of nanoparticles both inside of and 
outside from the gel matrix (Kudaibergenov 2008). A typical example of embedding 
of PVP-protected AuNPs, AgNPs, and palladium nanoparticles (PdNPs) within the 
hydrogel matrix is shown in Figure 1.3.

Palladium nanoparticles
protected by PVP

PVP-protected
palladium nanoparticles
within hydrogel matrix

(a) (b) (c)

AAm + MBAA + APS

FIGURE 1.3 Immobilization protocol of polymer-protected nanoparticles within hydrogel 
matrix and PAAH samples with immobilized AgNPs (a), AuNPs (b), and PdNPs (c).
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The average size of AgNPs, AuNPs, and PdNPs in the volume of PAAH was 
equal to 20–30, 10–50, and 10–60 nm, respectively (Kudaibergenov et al. 2008). 
Metal ions with different oxidation states to be loaded into the hydrogel matrices can 
be reduced/precipitated to their metallic particle forms inside hydrogels of different 
dimensions using green chemicals or nontoxic chemical reducing agents such as 
NaBH4, H2, citrate, and ethylene glycol, depending upon the nature of the metal ions. 
Reduction of polyethyleneimine (PEI) protected and immobilized within PAAH 
AuNPs by NaBH4 is shown in Figure 1.4 (Dolya 2009).

Reduction of PEI–Au3+ complexes to Au0 within hydrogels is accompanied by the 
formation of a thin, colored layer on the gel surface that gradually moves into the gel 
volume. The driving force of this process is the constant diffusion of the reducing 
agent NaBH4 deeply into the gel volume. Narrow-dispersed gold nanospheres and 
single crystals were prepared, respectively, by reducing HAuCl4 within the hydrogel 
matrix (Kim and Lee 2007, Zhang et al. 2007). The authors (Kim and Lee 2007) 
described a unique strategy to prepare discrete composite nanoparticles consisting of 
a large gold core (60–150 nm) surrounded by a thermoresponsive hydrogel derived 
from the polymerization of NIPA or copolymerization with AAc. The growth of 
AuNPs in the presence of preformed spherical hydrogel particles allows a precise 
control of the size of composite nanoparticles between 200 and 550 nm. Most of 
the hydrogel-immobilized PdNPs exhibited good catalytic activity in both Heck and 
Suzuki reactions (Hagiwara et al. 2001, Kohler et al. 2001) and Suzuki–Miyaura 
cross-coupling reaction (Leadbeater and Marco 2002, Lu et al. 2004, Phan et al. 2004, 
Sivudu et al. 2008, Wu et al. 2011).

1.3.3  CATALYTIC PROPERTIES OF POLYMER-PROTECTED PDNPS 
AND AUNPS IMMOBILIZED WITHIN HYDROGELS

The combination of natural catalytic abilities with the in situ metal nanocatalyst 
preparation capability makes hydrogels indispensable multifunctional materials 
for unique applications (Jiang et al. 2004, Kidambi et al. 2004, Metin et al. 2009, 
Sahiner 2004, Wunder et al. 2011). The recent review (Sahiner 2013) summarizes 
application aspects of metal nanoparticles within hydrogel templates in catalysis. 
Of special interest are the homo- and copolymers of NIPA that undergo a sharp 
volume transition around the body temperature (Peppas et al. 2006). Many research-
ers have examined the potential application of NIPA-based polymers for the 
immobilization of AuNPs (Echeverria and Mijangos 2010, Wang et al. 2004a,b). 

(b) (c) (d) (e)(a)

FIGURE 1.4 Swollen in water PAAH/PEI-HAuCl4 (a) in the course of reduction by NaBH4 
(C = 0.1 mol/L) during 5 min (b), 15 min (c), 60 min (d), and 1 day (e).
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Examples of catalytic system acting by “on-off” mechanism are NIPA-based hydro-
gels that reversibly swell or shrink in water–ethanol mixture (Wang et al. 2000) or 
reversibly turn “off” �rst and then “on” as the temperature is �rst raised and then 
lowered (Bergbreiter et  al. 1998). The “smart” behavior of the PNIPA/PVP-Pd(0) 
system was demonstrated in the course of allyl alcohol hydrogenation (Dolya 2009, 
Dolya et al. 2008a,b, 2009). Swelling–deswelling of PNIPA at temperature interval 
25°C–40°C causes the release or in�ow of PVP-Pd(0) outside or inside of the hydro-
gel matrix. This in turn leads to periodic increase or decrease of the hydrogenation 
rate of allyl alcohol (Figure 1.5).

The catalytic activity of polymer-protected and PAAH-immobilized Pd(0) cat-
alysts increased in the following order: PAAH/PVA-Pd(0) > PAAH/PVP-Pd(0) > 
PAAH/PEI-Pd(0) > PAAH/PAA-Pd(0). The catalytic activity of PAAH/PEI-Pd(0), 
PAAH/PVP-Pd(0), and PAAH/PVA-Pd(0) catalysts preserved up to hydrogenation 
of 12 sequential portions of allyl alcohol (Zharmagambetova et al. 2010). Turnover 
numbers (TONs) for PAAH/PEI-Pd(0) and PAAH/PVP-Pd(0) were equal to 4 × 103 

25°C 40°C df
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FIGURE 1.5 Reversible changing of size (a) and catalytic activity of PNIPA/PVP-Pd(0) 
(b) at 25 h 40°С.
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and 7 × 103, respectively, indicating a stable and long-lived behavior of catalysts. 
After hydrogenation of sequential portions of allyl alcohol, the amount of Pd(0) on 
the surface of gel matrix is considerably reduced (Figure 1.6). This is probably due 
to leaching out of Pd nanoparticles in the course of hydrogenation reaction. The aver-
age size of Pd nanoparticles was less than 100 nm, although the bigger aggregated 
particles were observed, while SEM micrographs of pristine PAAH/PVP-Pd(0) show 
spheres with an average diameter of about 60 nm that are related to PVP-stabilized 
spherical PdNPs or particle aggregates.

The catalytic activity of gel-immobilized AuNPs was evaluated with respect 
to hydrogen peroxide decomposition. The in�uence of (1) substrate concentration 
(C = 10–40 wt.%) at constant temperature (T = 328 K) and constant mass of catalyst 
(mcat = 30 mg), (2) temperature (T = 308–323 K) at constant substrate concentration 
([H2O2] = 30 wt.%) and constant mass of catalyst (mcat = 30 mg), and (3) mass of cata-
lyst (mcat = 15–50 mg) at constant temperature (T = 328 K) and constant substrate 
concentration ([H2O2] = 30 wt.%) on the decomposition rate of H2O2 was studied. 
In each experiment, the volume of substrate was kept constant and equal to 1 mL.

The catalytic activity of gel-immobilized AuNPs was much lower than that depos-
ited on metal oxides. This is probably accounted for the less accessibility of catalytic 
centers in gel matrix to substrate molecules, for example, entrapment of polymer-
protected AuNPs within hydrogel networks may restrict the diffusion of substrate 
inside of the gel.

1.4  DRUG DELIVERY SYSTEMS BASED ON CROSS-
LINKED COPOLYMERS OF ACRYLAMIDE 
AND N-ISOPROPYLACRYLAMIDE

Immobilization of biologically active substances, such as drugs, proteins, DNA, 
enzymes, and living cells, within stimuli-responsive hydrogels is of great inter-
est for medicine, pharmaceutics, biotechnology, and bio- and genetic engineering 
(Hoffman and Stayton 2004, Lee and Yuk 2007, Liu et al. 2007, Peppas et al. 2006, 
Rzaev et al. 2007, Stein 2009). One of the serious problems of modern medicine is 

(b)(a)
S-4800 5.0 kV 5.0 mm ×20.0 k SE(M) 11/6/2007 17:47 2.00 µm S-4800 5.0 kV 5.0 mm ×50.0 k SE(M) 11/6/2007 18:07 1.00 µm

FIGURE 1.6 SEM pictures of PVP-protected PdNPs within the gel matrix of PAAH after 
hydrogenation of the 1st (a) and 12th (b) successive portions of allyl alcohol.
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transportation of biologically and physiologically active substances to target places 
of organisms in a strictly de�nite dose. Presently, about 25% of drugs of leading 
pharmaceutical companies prepared for selling, production, and application are pro-
vided by transportation system. Hydrogel materials, due to excellent swellability in 
water, softness, elasticity, and biological compatibility, are widely applied for the 
design of drug delivery systems that are able to transport drugs to a target part of an 
organism by realization of positive feedback with environment providing afterward 
more reliable and controlled treatment of diseases (Anish and Abdul 2012, Eros 
et al. 2003, Galaev and Mattiasson 1999, Kumar et al. 2007, Manpreet et al. 2013). 
Among the well-known hydrogel systems of synthetic origin, the homo- and copo-
lymers of AAс and NIPA are able to change morphology, size, and shape under the 
action of external stimuli (Bajpai et al. 2008, Feng et al. 2010, Hoare and Kohane 
2008, Jagur-Grodzinski 2010, Qiu and Park 2012). pH medium and body tempera-
ture changes are the most widely used triggering signals for both site-speci�c ther-
apy and pulsatile drug release (Anil 2007, Bajpai et al. 2008, Coughlan et al. 2004, 
Liusheng et al. 2011, Yoshida et al. 2013). In this connection, the development of 
thermo- and pH-responsive hydrogel materials that might realize “on-off” mecha-
nism of drug delivery, that is, opening and closing the “thermo- or pH valve” to 
deliver the dosed amount of drug to the diseased part of the body, presents great inter-
est (Chen et al. 2012b). The most signi�cant weakness of external stimuli-sensitive 
hydrogels is that their response time is too slow. Therefore, the fast-acting hydrogels 
are necessary, and the easiest way of achieving that goal is to make thinner and 
smaller hydrogels. A method for making thermally responsive hydrogel scaffolds 
with a remarkably rapid response to temperature changes was developed by Cho 
et al. (2008). The recent remarkable review of Klinger and Landfester (2012) pres-
ents some of the important fundamental examinations on the in�uence of (tunable) 
network characteristics on loading and release pro�les and basic synthetic concepts 
to realize these concepts and highlights several examples of different approaches to 
stimuli-responsive microgels for loading and release applications.

1.4.1 HYDROGEL-IMMOBILIZED LOCAL ANESTHETIC DRUGS

Immobilization of local anesthetic drugs, such as lidocaine, novocaine, and bupiva-
caine, into stimuli-responsive hydrogel matrix is very important to solve the problems 
of “medicine of catastrophe” when �rst aid is needed after an earthquake and �re. 
Hydrogel-immobilized local anesthetic drugs can serve as wound dressing materi-
als due to their versatility and unique properties, such as high water content and soft 
and rubbery consistency, that make them similar to natural tissues. Literature sur-
vey shows that lidocaine was loaded within IPNs based on PNIPA, PVP, and AMPS 
(Akdemir and Kayaman-Apohan 2007) and NIPA–itaconic acid (IA) copolymeric 
hydrogels (Taşdelen et al. 2004) by sorption immobilization. Lidocaine uptake of the 
IPNs was found to increase from 24 to 166 (mg lidocaine/g dry gel) with increasing 
amount of AMPS contents in the IPN structure, while lidocaine adsorption capacity 
of the NIPA-IA hydrogels was found to increase from 3.6 to 862.1 (mg lidocaine/g dry 
gel) with increasing amount of IA in the gel structure. In both cases, the electrostatic 
interactions between anionic groups of hydrogels and cationic groups of lidocaine are 
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responsible for retarding drug release pro�le. The release characteristics of lidocaine 
from an anionic hydrogel composed of carbopol and a cationic hydrogel composed 
of chitosan were examined for optimizing hydrogel formulation as a sponge �ller to 
stop the bleeding and as a carrier for delivering lidocaine to relief pain after a tooth 
extraction (Liu et al. 2007). The elasticity of the gel matrix and the ionic complexing 
effect between the anionic acid groups of hydrogels and cationic groups of lidocaine 
are two main factors in�uencing regulation of the diffusion coef�cient for controlling 
drug release. Spherical nanoparticulate drug carriers made of poly(d,l-lactic acid) 
(Gorner et al. 1999, Polakovič et al. 1999) and of poly(d,l-lactic-co-glycolic acid) 
50:50 mol/mol (Holgado et al. 2008, Zhang et al. 2008) with controlled size were 
designed for encapsulation of lidocaine and bupivacaine. Particles with sizes in the 
range of 250–820 nm and low polydispersity were prepared with good reproducibil-
ity; the large particles with a high loading (∼30%) showed under in vitro conditions 
a slow release over 24–30 h, the medium-sized carriers (loading of ∼13%) released 
the drug over about 15 h, and the small particles with small loading (∼7%) exhibited 
a rapid release over a couple of hours. Two simple models, diffusion and dissolution, 
were applied for the description of the experimental data of lidocaine release and for 
the identi�cation of the release mechanisms for the nanoparticles of different drug 
loading. The modeling results showed that in the case of high drug loadings (about 
30% w/w), where the whole drug or a large part of it was in the crystallized form, the 
crystal dissolution could be the step determining the release rate. On the other hand, 
the drug release was diffusion controlled at low loadings (<10% w/w) where the solid 
drug was randomly dispersed in the matrix. The estimated values of the diffusion 
coef�cient of lidocaine in these particles were in the range of (5–7) × 10−20 m2/s. The 
ef�cacy and toxicity of bupivacaine loaded in biodegradable polymer poly(sebacic-
co-ricinoleic acid) for producing motor and sensory block when injected near the 
sciatic nerve were evaluated (Shikanov et al. 2007). In vitro and in vivo bupivacaine 
release after injection in mice showed that 70% of the drug has been released during 
1 week. Single injection of 10% bupivacaine in the polymer caused motor and sen-
sory block that lasted 30 h. It was concluded that the poly(sebacic-co-ricinoleic acid) 
is a safe carrier for prolonged activity of bupivacaine. Richlocaine and richlocaine 
hemisuccinate are new local anesthetic drugs, invented by Kazakhstan chemists, that 
have been registered and approved for use in CIS countries (Sharifkanov et al. 2011) 
(Figure 1.7). In medicine, richlocaine is applied only as an isotonic injection solution. 
The anesthetic and antibacterial effectiveness of richlocaine is much higher than that 
of bupivacaine, novocaine, and lidocaine.
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FIGURE 1.7 Structural formulas of (a) richlocaine, (b) richlocaine hemisuccinate, and 
(c) richlocaine as an injection solution.
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Development of a prolonged drug dosage form would be bene�cial. Richlocaine 
was immobilized into linear and weakly cross-linked PVP (Makysh et al. 2003), 
poly(sodium acrylate) (PSA), and betaine-type polyampholyte gels (Makysh et al. 
2002). The properties of polymer–drug complexes were studied with respect to 
external factors, such as pH, temperature, and thermodynamic quality of water–
ethanol mixture. The kinetics of richlocaine release from the PVP gel matrix into 
water was studied. At pH = 7.0, ∼20% of richlocaine was released within 96 h. This 
quantity remained constant up to 384 h, indicating poor desorption of richlocaine. 
Comparatively, complexes of richlocaine with PSA and betaine-type polyampholyte 
gels displayed better desorption; the degree of release of richlocaine reached ∼95% 
within 144 h and ∼80% within 260 h, respectively. The quantity of released richlo-
caine increased up to 50% at pH = 8.0, obviously indicating the destruction of the 
PVP gel–richlocaine complex at this pH. The activation energies of drug release 
from the PVP gel matrix, PSA gel, and betaine-type polyampholyte gel were equal to 
6.86, 5.26, and 17.14 kJ/mol, respectively. The effect of richlocaine on the swelling/
deswelling kinetics and pulsatile drug release from the thermoresponsive hydrogels 
such as weakly cross-linked copolymers of AAm-AAc, hydrogels of PNIPA, and 
3D networks of NIPA-AAc and NIPA-AMPSA was examined (Tatykhanova 2009). 
The richlocaine release pro�le exhibits a similar trend with the swelling–deswelling 
behavior of hydrogels (Figure 1.8). The initial release of the drug is due to the pres-
ence of surface-encapsulated components that are squeezed out during the �rst 
temperature pulse. The release of richlocaine at T < volume phase transition tem-
perature (VPTT) is governed by diffusion. At T > VPTT, the surface of the hydrogel 
shrunk immediately and formed an impermeable “skin” layer restricting the release 
of immobilized bioactive molecules. The second and third temperature pulses lead 
to the decrease of the release rate due to the decrease in the concentration of richlo-
caine in the hydrogel volume.
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FIGURE 1.8 Time-dependent pulsatile release of richlocaine from PNIPAM hydrogel into 
phosphate buffer (1) and water (2) at 25°С and 40°С.
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1.4.2 CONTROLLED RELEASE OF PROTEINS FROM STIMULI-RESPONSIVE HYDROGELS

The use of stimuli-sensitive hydrogels for the encapsulation and controlled release 
of proteins has received signi�cant attention. The release of bovine serum albumin 
(BSA), a model drug, from a series of thermosensitive silk sericin (SS)/PNIPA and 
pH-responsive SS/poly(methacrylic acid) IPN hydrogels has been studied (Wen et al. 
2013). The pulsatile releasing behavior of IPN hydrogels revealed that they can be 
made into microcapsules or thermo valves, which act as an on-off release control.

An ef�cient strategy to conjugate methacrylamide moieties to the lysine units of 
lysozyme for copolymerization and subsequent triggered release from hydrogels has 
been developed (Verheyen et al. 2011). Methacrylated dextran (dex-MA) was polym-
erized in the presence of native or modi�ed lysozyme to yield hydrogels. The release 
of native and modi�ed lysozyme from dex-MA hydrogels was studied in acetate 
buffer (pH 5, in the absence of any trigger), and only a minor fraction (~15%) of the 
modi�ed lysozyme was released, whereas ~74% of the native lysozyme was released.

Horseradish peroxidase and alkaline phosphatase were immobilized into cellulose 
hydrogel prepared from an aqueous alkali–urea solvent (Isobe et al. 2011). Proteins 
were covalently introduced to cellulose gel by a Schiff base formation between the 
aldehyde and the amino groups of proteins and stabilized by a reduction of imines. 
The number of oxidized glucose per 100 glucose residues ranged between 3.3 and 
18.6. The activity of the immobilized enzymes increased with aldehyde content, but 
the effect leveled off at a low degree of oxidation, at approximately 8.1 of oxidized 
glucose/100 glucose unit. The amount of immobilized peroxidase calculated from 
the activity was 8.0 ng/g for an aldehyde content of 0.18 mmol/g and 14.6 ng/g for 
both 0.46 and 1.04 mmol/g. Due to the high mechanical and chemical stability of 
cellulose, this technique and resulting materials are potentially useful in biochemical 
processing and sensing technologies.

Shi et al. (2008) studied the pH-sensitive release of lysozyme from the poly(N-
vinyl formamide) nanogels ∼100 nm in diameter. Approximately 95% of lysozyme 
encapsulated in nanogels released over 200 min at pH 5.8 compared to only ~15% 
released at pH 7.4.

β-Galactosidase was immobilized in a cross-linked PNIPA-AAc hydrogel that 
exhibits a VPT behavior (Park 1993). The stability of an immobilized enzyme was 
investigated at different temperatures that allow different degrees of collapse in the 
hydrogel matrix. It was hypothesized that the immobilized enzyme is more stable in 
the collapsed matrix due to the physical restraint imposed on the enzyme entrapped.

Temperature- and pH-sensitive hydrogels, based on NIPA and IA, were charac-
terized for their sensitivity to the changes of external conditions and the ability to 
control the release of a hydrophilic model protein, lipase (Milasinovic et al. 2010). 
The hydrogels demonstrated protein loading ef�ciency as high as 95 wt.%. High 
dependence of lipase release kinetics on hydrogel structure and the environmental 
pH was found, showing low release rates in acidic media (pH 2.20) and higher at 
pH 6.80. The hydrogels were found suitable for releasing therapeutic proteins in a 
controlled manner at speci�c sites in the gastrointestinal tract.

Catalase was entrapped in PAAm, PSA, and poly(acrylamide-co-sodium 
acrylate) (PAAm-SA) gels (Jiang and Zhang 1993) and in thermally reversible 
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poly(NIPA-co-hydroxyethylmethacrylate) (NIPA-HEMA) copolymer hydrogels 
(Arica et al. 1999) and on a cross-linked macromolecular carrier of a polysaccha-
ride structure (gellan) (Popa et al. 2006). The percentage of entrapment was found 
to be about 85%. The enzyme immobilized in PAAm has very low activity, while 
the enzyme in PAAm-SA exhibits the highest activity. The kinetic behavior of the 
entrapped enzyme was investigated in a batch reactor. The apparent kinetic constant 
of the entrapped enzyme was determined by the application of the Michaelis–Menten 
model and indicated that the overall reaction rate was controlled by the substrate dif-
fusion rate through the hydrogel matrix. Due to the thermoresponsive character of 
the NIPA-HEMA, the maximum activity was achieved at 25°C with the immobilized 
enzyme. The Km value for immobilized catalase (28.6 mM) was higher than that of 
free enzyme (16.5 mM). Optimum pH was the same for both free and immobilized 
enzyme. Operational, thermal, and storage stabilities of the enzyme were found to 
increase with immobilization.

BSA and lysozyme were embedded into the hydrogel volume of AAm-AAc, 
PNIPA, and NIPA-AAc by in situ and sorption methods from aqueous and phos-
phate buffer solutions (рН = 7.4, μ = 0.15 М NaCl) (Kudaibergenov et al. 2011). 
Oscillating the “on-off” release mechanism of proteins from the volume of PNIPA 
and NIPA-AAc hydrogels was observed in the course of cyclic shrinking and swell-
ing of hydrogels in water and phosphate buffer at 25°С and 40°С (Figure 1.9).

Sorption of catalase by AAm-AAc, NIPA-AAc, and PNIPA hydrogels proceeds 
via diffusion. Equilibrium swelling degree of dry samples in the course of catalase 
sorption and the activity of immobilized enzyme are changed in the following order: 
AAm-AAc > NIPA-AAc > PNIPA (Tatykhanova 2009). It is explained by the fact 
that binding of catalase by hydrogel matrix proceeds via electrostatic interaction 
with participation of carboxylic groups of the network and amine groups of enzyme. 
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FIGURE 1.9 Time-dependent pulsatile release of BSA (1) and lysozyme (2) from PNIPAM 
hydrogel into phosphate buffer at 25°С and 40°С.
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Maximal swelling and binding degree of catalase by hydrogels corresponds to neutral 
region. The relative activity of catalase encapsulated into AAm-AAc and NIPA-AAc 
networks after 74 days decreases two times, while the activity of catalase in solution 
decreases 46 times. The activity of immobilized and pristine catalase at temperature 
interval from 25°С to 70°С decreased 3 and 10 times, respectively. These results 
reveal that hydrogel-immobilized catalase preserves the catalytic activity for a long 
time and high temperature.

1.5  COMPLEXES OF LINEAR POLYAMPHOLYTES AND 
AMPHOTERIC GELS WITH TRANSITION METAL IONS

Renewed interest to polyampholyte–metal complexes is dictated by the fact that 
such complexes can model the protein–metal complexes and are relevant to cataly-
sis (Bekturov and Kudaibergenov 1996, Casoloro et al. 2001, Khvan et al. 1985). 
For example, the kinetics and mechanism of complexation of AAc and vinylimid-
azole copolymers with Cu2+, Co2+, and Ni2+ ions are similar to the interaction of 
the carboxyl and imidazole groups of gelatin with the same metal ions (Annenkov 
et al. 2000, 2003). Polyampholyte–metal complexes are proved to exhibit catalase-
like activity in decomposition of hydrogen peroxide (Bekturov et al. 1986, Lázaro 
Martínez et al. 2011, Sigitov et al. 1987) and to serve as hydrogenation or oxidation 
catalysts for organic substrates (Lázaro Martínez et al. 2008a,b, Xi et al. 2003). 
The ability of water-soluble or water-swelling polyampholytes to form stable che-
late structure can be used for water treatment (Anderson et al. 1993) and recovery 
of metal ions from the wastewater (Ali et al. 2013, Chan and Wu 2001, Martınez 
et al. 2008, Rivas et al. 2006, Terlemezian et al. 1990, Xu et al. 2003) and polluted 
soils (Rychkov 2003). Amphoteric hydrogels, due to their high sorption and easy 
desorption of organic molecules and metal ions, coupled with durability and good 
mechanical stability, have potential applications in the removal of dyes (Dalaran 
et al. 2011) and recovery of metal ions from wastewater and in ion-exchange chro-
matography (Arasawa et al. 2004, Jiang and Irgum 1999). Amphoteric gel derived 
from ethylene glycol diglycidyl ether, methacrylic acid, and 2-methylimidazole has 
been complexed with Cu2+ and Co2+ ions (Lombardo Lupano et al. 2013, Martínez 
et al. 2011). The catalytic activity of this material was studied with respect to H2O2 
decomposition. In the presence of polyampholyte–metal complexes, about 70% of 
methyl orange (model dye) was removed from distilled water in 2 h by oxidation with 
H2O2, and about 80% of epinephrine (model drug) was converted to adrenochrome 
in less than 6 min, following a pseudo-�rst-order kinetic model.

1.5.1  COMPLEXATION OF POLYBETAINIC OR 
POLYZWITTERIONIC GELS WITH METAL IONS

Among the various types of polyampholyte–metal complexes summarized in 
Ciferri and Kudaibergenov (2007), Kudaibergenov (2002), Kudaibergenov (2008), 
Kudaibergenov and Ciferri (2007), less attention has been paid to metal complexes 
of cross-linked polybetaines or polyzwitterions (Kudaibergenov et al. 2006). The 
polybetaines (or “polyzwitterions”) are dipolar species, in which the cationic and 
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anionic groups are separately bound to the same monomer unit and can be  completely 
dissociated in a medium of suf�cient dielectric permittivity. The most widespread 
chemical classes of polybetaines are carbo-, sulfo-, and phosphobetaines, that is, 
 polymers with repeat units bearing simultaneously a quaternized ammonium 
group and a carboxylate, a sulfonate, or a phosphate group, respectively. As dis-
tinct from classical polybetaines, the research group of Ali (Ali and Haladu 2013, 
Ali and Hamouz 2012, Charles et al. 2012) developed novel polymers containing 
zwitterionic (±) and anionic  (−) or cationic (+) groups such as poly(electrolyte–
zwitterions) that have two negative and one positive charges (or  two positive and 
one negative charges) in each monomer unit. The cross-linked polymer having 
zwitterionic/anionic group was synthesized via copolymerization of N,N-diallyl-
N-sulfopropylammonioethanoic acid and sulfur dioxide in the presence of cross-
linker 1,1,4,4-tetraallylpiperazinium dichloride followed by hydrolysis with NaOH 
to convert poly(zwitterions) into cross-linked polyzwitterion/anion (CPZA) (Ali and 
Haladu 2013). Simultaneous complexation of two units in CPZA is the driving force 
to capture Sr2+ ions (Figure 1.10).

The removal of 87% and 92% of Sr2+ ions at the initial concentrations of 200 ppb 
and 1 ppm was, respectively, observed. Excellent adsorption and desorption capacity 
of CPZA would enable its use in the treatment of radioactive nuclear waste contain-
ing Sr2+ ions.

New amphoteric gels based on NIPA and amino acid (l-ornithine) were prepared 
by free radical polymerization in aqueous solutions (Marcin et al. 2010). The pres-
ence of NIPA and amino acid moieties imparts their multiresponsive character to 
temperature, pH, and metal ion complexation. The gels were found to be most sensi-
tive to concentrations of copper ions in the range 10−6 to 10−5 M. As the amount of 
amino acid in the polymer network increases, the gels gradually lose their tempera-
ture sensitivity and become more sensitive to copper ion concentration. The VPTT 
decreases signi�cantly after the addition of copper ions. Analysis of the UV-Vis 
spectra and the swelling behavior indicates that both 1:1 and 1:2 complexes are 
present in the swollen state of the gels, whereas the latter complex is more dominant 
in the shrunken state. It is concluded that the metal ion sorption ability, the tempera-
ture, and the pH sensitivity of amphoteric hydrogels make them interesting materials 
in terms of the temperature- and pH-triggered swinging of the binding strength of 
heavy metal absorbers.

Where Men+ is metal ions
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FIGURE 1.10 Simultaneous complexation of two units in CPZA is the driving force to 
capture Sr2+ ions.
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Novel monomers containing amino acid residues were synthesized by condensa-
tion of the acetoacetic ester with glycine, β-alanine, and l-lysine in mild conditions 
(Kudaibergenov et al. 2007). Cross-linked polybetaines consisting of the amino acid 
moieties beside the carboxybetaine functionality were obtained via Michael addition 
reaction with participation of AAc followed by radical polymerization (Kudaibergenov 
et al. 2007). A series of polybetaine gels consisting of amino acid moieties (glycine, 
β-alanine, and l-lysine) were used to uptake metal ions from model solutions. Sorption 
of metal ions by hydrogels is accompanied by contraction and colorization of samples. 
At �rst, the thin colored layer on the gel surface is formed and it gradually moves into the 
gel volume. The driving force of this process is “ion-hopping transportation” of metal 
ions through intra- and intermolecular chelate formation, for example, constant migra-
tion of metal ions deeply into the gel volume by exchanging of free ligand vacancies.

1.5.2 METAL COMPLEXES OF AMPHOTERIC CRYOGELS

Cryogels are gel matrices that are formed in moderately frozen solutions of mono-
meric and polymeric precursors (Dinu et al. 2013, Mattiasson et al. 2010, Stein 2009). 
A system of large interconnected pores is a main characteristic feature of cryogels. 
The pore system in such spongelike gels ensures unhindered convectional transport 
of solutes within the cryogels, contrary to diffusion of solutes in traditional homo-
phase gels. Semi-IPN cryogels based on cross-linked PAAm and anionic (Dragan and 
Apopei Loghin 2013) or cationic (Dragan and Dinu 2013) polyelectrolytes can serve 
as effective sorbents for the removal of dye molecules and metal ions. Amphoteric 
cryogels due to their response to temperature, pH, ionic strength, water–organic sol-
vent composition, electric �eld, etc., belong to “smart” materials (Kudaibergenov 
et al. 2012b). A series of amphoteric cryogels with molar ratio of AAm, allylamine 
(AA), and methacrylic acid (MAA) (AAm:AA:MAA = 80:10:10, 60:20:20, 40:30:30, 
20:40:40, and 0:50:50 mol.%/mol.%/mol.%) were synthesized (Kudaibergenov et al. 
2012b, Tatykhanova et al. 2012). The structure and morphology of amphoteric cryogels 
and their complexation ability with respect to transition metal ions were evaluated. 
Cross and longitudinal sections of dry cryogels show spongelike porous structure with 
pore size ranging from 50 to 200 μm and the interconnected channels (Figure 1.11).

Complexation of amphoteric cryogels with transition metal ions is accompanied 
by colorization and slight shrinking of samples (Figure 1.12a). This is due to the 
formation of coordination and ionic bonds between metal ions and amine and/or 
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FIGURE 1.11 SEM images of cross- and longitudinal sections of cryogels with pore size 
(a) 50, (b) 100, and (c) 200 μm.
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carboxylic groups of cryogels when aqueous solutions of metal salts pass through the 
gel specimen. The dynamic sorption capacity of amphoteric cryogels with respect 
to copper, nickel, and cobalt ions was evaluated. The amount of adsorbed metal 
ions varied from 99.17% to 99.55%. Dynamic exchange capacity of cryogels was 
in the range of 350–400 mg/L. Desorption of metal ions from cryogel volume was 
provided by disodium salt of ethylenediaminetetraacetic acid. The extracted amount 
of metal ions was equal to 75%–80%. Figure 1.12b demonstrates the adsorption and 
desorption curves of copper ions by amphoteric cryogel.

Preferentially, the adsorption of Cu2+ ions (79%) in comparison with Ni2+ (38%) 
and Co2+ ions (32%) from their mixture was also observed from aqueous solution 
containing 10−5 mol/L of metal ions indicating the speci�c binding of copper ions. 
High adsorption capacity of amphoteric macroporous gels with respect to metal ions 
may be perspective for puri�cation of the wastewaters and analytical purposes. The 
reduction of cryogel–metal complexes by NaBH4 leads to the formation of nano- and 
micron-sized particles of metals and/or metal oxides immobilized on the inner and 
surface parts of amphoteric cryogels (Figure 1.13). The chemical composition of the 
Ni-containing sample by energy-dispersive x-ray attached to SEM revealed that up 
to 34 wt.% of Ni particles is formed.
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FIGURE 1.12 Sorption (a) and desorption (b) of copper ions by amphoteric cryogel ACG-334.
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FIGURE 1.13 SEM pictures of pristine (a) ACG-334/copper(II) complexes, (b) ACG-334/
nickel(II), and (c) ACG-334/cobalt(II) complexes reduced by NaBH4.
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The following advantages of amphoteric macroporous cryogels with respect to 
metal ions are outlined: (1) Adsorption of metal ions can be provided in static and 
dynamic regimes; (2) adsorption and desorption processes are simple, for example, 
metal containing aqueous solution or desorbing agent is passed through the sample 
with de�nite rate; (3) high adsorption capacity of cryogels is due to the presence 
of complex-forming ligands (amine and carboxylic groups) and highly developed 
inner and outer surface; (4) the trace amount of metal ions may be concentrated 
up to three orders; (5) immobilized within macropores, metal ions can easily be 
reduced by reducing agents, and afterward cryogels might be used as �owing cata-
lytic microreactors.

1.6  MOLECULAR IMPRINTED HYDROGELS 
FOR RECOVERY OF METAL IONS

Molecular recognition processes found in nature have always inspired scientists to 
mimic these systems in synthetic materials such as molecular imprinted polymers 
(MIPs) (Bergmann and Nicholas 2008, Byrne et al. 2002). MIPs and molecular 
imprinted hydrogels (MIHs) are commonly accepted in literature as synthetic 
approaches to design a precise macromolecular architecture for the recognition 
of target molecules from an ensemble of closely related molecules, while molecu-
lar imprinted technology (MIT) or molecular recognition technology (MRT) can 
be de�ned as engineering applications of such materials. Molecular imprinting 
involves forming a prepolymerization complex between the template molecule 
and functional monomers or functional oligomers (or polymers) (Wizeman and 
Ko�nas 2001) with speci�c chemical structures designed to interact with the tem-
plate by either covalent (Wulff 1995) or noncovalent chemistry (self-assembly) 
(Mosbach and Ramstrom 1996, Sellergren 1997), or both (Kirsch et al. 2000, 
Whitcombe et al. 1995). In the last decade, there has been an exponential increase in 
the number of papers describing molecular imprinting technique that creates mem-
ory for template molecules within a �exible macromolecular structure (Byrne and 
Salian 2008). Cameron et al. (2006) comprehensively surveyed over 1450 original 
papers, reviews, and monographs, starting from the pioneering work of Polyakov 
(1931) to show the fundamental and engineering aspects of molecular imprinting 
science and technology for the years up to and including 2003. According to the Web 
of Knowledge database searched up to 2012, ca. 13,000 papers have been published 
on molecular imprinting. Several remarkable reviews (Buengera et al. 2012, Byrne 
and Salian 2008, Hendrickson et al. 2006, Mayes and Whitcombe 2005, Romana 
et al. 2012, Tokonami et al. 2009, Vasapollo et al. 2011) were published with the aim 
to outline the molecularly imprinted process and present a summary of principal 
application �elds of molecularly imprinted polymers, focusing on chemical sens-
ing, separation science, biochemical analysis, drug delivery, catalysis, micro�uidic 
devices, and analytical purposes.

The nature of the interaction between the functional monomers and the 
template with the formation of the complex has both covalent (covalent molecu-
lar imprinting) and noncovalent (noncovalent molecular imprinting) characters. 
Covalent molecular imprinting refers to imprinting of preorganized systems 
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where the monomer–template complex is formed by the covalent interactions. 
Pioneering works of Nishide and Tsuchida (Nishide et al. 1976) and Kabanov 
(Kabanov et al. 1977, 1979) served as the fundamental basis for the imprinting 
of metal ions to MIPs. Such kind of polymeric sorbents made from natural and 
synthetic materials is widely used for the recovery of metal ions from the waste-
water (Ahmadi et al. 2010, Bessbousse et al. 2012, Birlik et al. 2007, Chauhan 
et al. 2005, 2009, Ge et al. 2012, Godlewska-Zyłkiewicz et al. 2012, Kowalczyk 
et al. 2013, Li et al. 2010, Orozco-Guareño et al. 2010, Panic et al. 2013, 
Wawrzkiewicz 2013). Noncovalent imprinting belongs to imprinting of self-
organizing systems in which the prepolymerization complex is formed by hydro-
gen, ionic bonding, hydrophobic and π–π interactions, as well as the van der 
Waals forces (Andersson and Mosbach 1990, Dunkin et al. 1993, Nicholls et al. 
1995, Sellergren et al. 1985). The noncovalent imprinting approach seems to hold 
more potential for the future of molecular imprinting due to the vast number of 
compounds, including biological compounds, which are capable of noncovalent 
interactions with polymerizable monomers. These noncovalent interactions are 
easily reversed, usually by wash in aqueous solution of an acid, a base, or organic 
solvents, thus facilitating the removal of the template molecule from the network 
after polymerization.

The commonly accepted procedure for immobilization and leaching 
of imprinted metal ions is (a) mixing solutions of the functional monomer 
with a print molecule to afford the corresponding complex as the template, 
(b) copolymerization of the monomer–metal complex with the cross-linking 
agent in the presence of the initiator, (c) washing the crude copolymer to remove 
unreacted functional monomer, and (d) leaching the print molecule from the 
template to afford the MIP. Novel ion-imprinted polymers (IIPs) were used for 
selective solid-phase extraction of Cd(II) (Fan et al. 2012, Li et al. 2011, Singh 
and Mishra 2009), Pb(II) (Behbahani et al. 2013), Cu(II) (Chen and Wang 2009, 
Shamsipur et al. 2010), and Ni(II) (Saraji and Yousefi 2009) ions from aqueous 
solutions. The imprinted metal ions were completely removed by leaching with 
1 M HNO3 or 0.01 M EDTA in 0.5 M HNO3. Compared with nonimprinted 
 polymer particles, the IIP had higher selectivity for metal ions. New IIPs for 
selective sorption and separation of Cr(III) (Birlik et al. 2007), Fe(III) (Xie et al. 
2012), Ru(III) (Godlewska-Zyłkiewicz et al. 2012), Nd(III) (Jiajia et al. 2009), 
and Au(III) (Ahamed et al. 2013) were synthesized. The IIPs for separation 
and preconcentration of UO2

2+  ions were obtained (Ahmadi et al. 2010, James 
et al. 2009). The applicability of IIP materials for the removal of emerging toxic 
pollutant uranium from uranium mining industry feed simulant solution is suc-
cessfully demonstrated. An Al(III)-ionic imprinted polyamine functionalized 
silica gel sorbent was prepared by a surface imprinting technique for selectively 
adsorbing Al(III) from rare-earth solution (An et al. 2013). The adsorption of 
Th(IV) was studied using novel dibenzoylmethane MIPs, which was prepared 
using acryloyl-β-cyclodextrin as a monomer on surface-modified functional 
silica gel (Ji et al. 2013).

The Ni(II)-dimethylglyoxime (DMG)-IIP was encapsulated in polysulfone 
and electrospun into nano�bers with diameters ranging from 406 to 854  nm 
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(Rammika et al. 2011). The recovery of Ni(II) achieved using the Ni(II)-DMG 
imprinted nano�ber mats in water samples was found to range from 83% to 89%, 
while that of nonimprinted nano�ber mats was found to range from 59% to 65%, 
and that of polysulfone from 55% to 62%. The MIH was synthesized by immobiliza-
tion of ethylenediaminetetraacetic acid–La(III) complex ([EDTA]:[La3+] = 2:1 mol/
mol) within AAm and AAc hydrogel matrix via in situ cross-linking polymerization 
(Bekturganov et al. 2010) (Figure 1.14).

It is expected that the EDTA–La(III) complex in hydrogel matrix is stabilized by 
electrostatic interaction between carboxylate anions and metal ions. After leaching 
out of La(III) ions by 0.1 N HCl, the MIH sample was used for recovery of trace 
concentration of rare-earth elements (REEs) from the real solution (Table 1.1).

Sorption of REE was also performed by commercially available Russian-made 
cation exchanger КУ-2-8н (Smirnov et al. 2002) (Table 1.2).
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FIGURE 1.14 Scheme of immobilization of EDTA in AAm-AA hydrogel under in situ 
polymerization conditions.

TABLE 1.1
Sorption of REE by MIH Sorbent from the Real Solution

Sorption

Initial Concentration of REE, mg/L

La Ce Pr Nd Y Dy Gd Total

Stock solution 0.024 0.23 0.041 0.036 0.26 0.35 13.84 14.78

After sorption by MIH 0 0 0.04 16⋅10−3 0.028 5⋅10−4 13.17 13.25

Sorption degree, % 100 100 0 95.5 89.25 99.86 4.84 89.64
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Comparison of the sorption effectiveness of REE by cation exchanger КУ-2-8н 
and MIH is in favor of the latter. Excepting for Pr and Gd, the EDTA-immobilized 
hydrogel sample adsorbs from 89% to 100% of REE during 20 min. Ammonium salt 
of EDTA was also used as an eluent in selective separation of REE (Lu, Sm, and Y) 
by ion-exchange resins based on iminodiacetic acid (Moore 2000). In spite of selec-
tive separation of REE by iminodiacetic resin in hydrogen form, the disadvantage of 
this process is the multistage character that consists of transferring of iminodiacetate 
resin at �rst to hydrogen form, then to ammonium form, saturation of iminodiacetate 
resin by REE solutions, and elution of REE by EDTA.

1.7 CONCLUDING REMARKS

Thus, the literature survey shows that the “smart” composite hydrogel materials are a 
fast developing and emerging �eld of polymer science. Synthetic and natural polymers 
including inorganic polymers, micro- and nanogels, metal nanoparticles, high- and 
low-molecular-weight ligands may be embedded into the hydrogel network, resulting in 
improvement of the mechanical properties and biocompatibility, making them as car-
riers for the controlled release of drugs and as catalysts, and providing stimuli-sensitive 
compositions. Structure, morphology, and physicochemical and physicomechanical 
properties of composite hydrogel materials are determined by both network structure 
and immobilized substances. The composite hydrogel materials can be applied in medi-
cine, biotechnology, catalysis, environmental protection, and oil industry.

ABBREVIATIONS

AA Allylamine
AAc Acrylic acid
AAm Acrylamide
AAm-AAc Acrylamide and acrylic acid
AAm-SA Poly(acrylamide-co-sodium acrylate)
AgNPs Silver nanoparticles
AMPS 2-Acrylamido-2-methyl-1-propanesulfonic acid
ARPDs Asphaltene–resin–paraf�n depositions
AuNPs Gold nanoparticles
BSA Bovine serum albumin
CPAM Cationic polyacrylamide

TABLE 1.2
Sorption of REE by КУ-2-8ʜ Cation-Exchange Resin from the Real Solution

Sorption

Initial Concentration of REE, mg/L

La Ce Pr Nd Y Dy Gd Total

Stock solution — 0.46 0.065 0.061 0.23 0.20 6.54 7.556

After sorption by КУ-2-8н — 0.29 0.065 0.021 0.032 0.13 4.75 5.291

Sorption degree, % — 36.96 0 65.67 86.08 35.00 27.37 70.02
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CTS Chitosan
CTS-g-PAAc/MMT Chitosan-g-poly(acrylic acid)/montmorillonite
Dex-MA Methacrylated dextran
DLS Dynamic light scattering
DMG Dimethylglyoxime
EDTA Ethylenediaminetetraacetic acid
FTIR Fourier transform infrared spectroscopy
GE Gelatin
IIP Ion-imprinted polymers
IPN Interpenetrating polymer network
MAA Methacrylic acid
MB Methylene blue
MBAA Methylenebisacrylamide
MIH Molecular imprinted hydrogels
MIP Molecularly imprinted polymers
MIT Molecular imprinted technology
MMT Montmorillonite
MRT Molecular recognition technology
NIPA N-Isopropylacrylamide
NIPA-AAc N-Isopropylacrylamide and acrylic acid
NIPA-IA N-Isopropylacrylamide-itaconic acid
NIPA-HEMA Poly(isopropylacrylamide-co-hydroxyethylmethacrylate)
PAAc-B-FeCo Poly(acrylic acid)–bentonite–FeCo
PAAH Poly(acrylamide) hydrogel
PdNPs Palladium nanoparticles
PEI Polyethyleneimine
PNIPA Poly-N-isopropylacrylamide
PVP Poly(N-vinyl-2-pyrrolidone)
PVP gel Poly(N-vinyl-2-pyrrolidone)gel
PSA Poly(sodium acrylate)
REE Rare-earth elements
SA Sodium alginate
SEM Scanning electron microscopy
SS Silk sericin
TON Turnover numbers
VPTT Volume-phase-transition temperature
w.r. Weight ratio
XRD X-ray diffraction
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