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about the book…

Proteins and Peptides presents a valuable opportunity for all drug discovery and 
drug development scientists to upgrade and enhance their research. With the recent 
explosion of protein and peptide therapeutics entering the pipelines in both 
biopharmaceutical and traditional pharmaceutical companies, it is now more critical 
than ever before to understand the full potential of these drug candidates currently 
in progress.

This resource will enable drug discovery and development scientists to:
• �be prepared for clinical trials—to advance these key molecules to the 

clinical trials stage, a complete understanding of their pharmacokinetic, 
pharmacodynamic, and metabolic fate is required 

• �positively affect future outcomes—by playing a critical role in the design 
of proteins and peptides that address previously untreatable diseases and 
conditions, with the ultimate goal of improving patient outcomes 

• �learn from 35 thought leaders—who share their experiences and research 
findings that will benefit those in the pharmaceutical, biopharmaceutical, 
and biotechnology fields 

• �build upon prior successes—gain valuable, positive insights based upon 
proteins and peptide therapeutics already taken to market—e.g. antibodies, 
interleukins, interferons, growth factors, and peptide hormones 

• �analyze needle-less delivery methods—such as transdermal and oral routes, 
as well as delivery to the eye and brain, and how the protein or peptide is 
impacted by these types of deliveries
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Preface

The promise of biotechnology and an increased understanding of the human
genome have resulted in an explosion of protein and peptide therapeutics
entering research and development pipelines in biopharmaceutical as well as
traditional pharmaceutical companies. Increasingly, these protein and peptide
candidates are being designed to address previously untreatable diseases and
conditions. To advance these molecules into clinical trials, however, an under-
standing of their pharmacokinetic, pharmacodynamic, and metabolic fate is
required. The study of these events represents emerging disciplines with issues
and challenges distinct from those of small molecules, on which many of the
principles of these fields were initially developed.

That many of the protein and peptide therapeutics being evaluated are
endogenous or emulate an endogenous material potentially defines preestab-
lished pharmacokinetic, pharmacodynamic, and metabolic parameters for these
molecules in the human model. Unfortunately, or fortunately, initial preclinical
testing of potential protein and peptide therapeutics requires obtaining infor-
mation on safety and preclinical efficacy in (typically) several nonhuman animal
models. Such studies are complicated, or rather compromised, by the fact that
nonhuman models may not express critical elements such as receptors, binding
proteins, and enzyme activities that function to define pharmacokinetic, phar-
macodynamic, and metabolic parameters in humans. Additionally, human
disease states being emulated, but never fully recapitulated, in nonhuman ani-
mal models may or may not faithfully describe conditions that will be con-
fronted in the clinic. All of these issues are further complicated by the fact that
these peptide and protein therapeutic candidates must be formulated for long-
term storage stability and delivered at concentrations and in locations that are
likely very different from endogenous events.

Most protein and peptide therapeutics are administered by injection,
usually being formulated with a strategy to minimize the frequency of these
injections. In this regard, recent studies have identified several alternative routes
of administration for proteins and peptides that were previously not considered
a viable option for delivery. Although the size and labile nature of protein and
peptide therapeutic candidates typically impede their passage across most
biological barriers, intranasal and pulmonary delivery for therapeutic proteins
and peptides is now a commercial reality. Additionally, tremendous progress
has been made for the delivery of proteins and peptides via transdermal and
oral routes as well as delivery to the eye and brain. All of these routes pose
unique pharmacokinetic, pharmacodynamic, and metabolic challenges for the
protein or peptide being delivered, each of which might be altered in the human
model of disease relative to the nonhuman models initially examined.

The chapter topics that follow were selected to provide an overall road-
map for understanding our current understanding of parameters that define the
pharmacokinetic, pharmacodynamic, and metabolic challenges for the delivery

vii
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of protein or peptide therapeutics. In general, these chapters recite lessons
learned for the major areas of proteins and peptide therapeutics that have been
successfully taken to market, for example, antibodies, interleukins, interferons,
growth factors, and peptide hormones. Additionally, chapters have been
included that explore innovations for protein and peptide delivery that include
needle-less delivery and strategies to deliver these molecules to locations such as
the eye and brain. Although all of the chapters were written with a forward-
looking perspective, with the goal of identifying issues that are likely to become
increasingly important in the future. It is hoped that the information shared in
these chapters will provide the reader with an increased understanding of issues
critical for successfully guiding a protein or peptide therapeutic candidate
through the maze of issues that define the pharmacokinetics, pharmacody-
namics, and metabolism of these molecules.

We would like to take this opportunity to again thank our authors, who
represent key contributors in these areas, for the expertise that they have shared.
It is our sincere wish that the knowledge put forth in the following chapters will
have a positive impact on the development of new drugs that will improve
health and alleviate suffering.

Randall J. Mrsny
Ann Daugherty

viii Preface
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1 In Vitro/In Vivo Correlations of
Pharmacokinetics, Pharmacodynamics,
and Metabolism for Hematologic Growth
Factors and Cytokines

Graham Molineux and Stephen J. Szilvassy
Hematology-Oncology Research, Amgen, Inc., Thousand Oaks, California, U.S.A.

HEMATOPOIETIC LINEAGES AND
THE CONTROL OF CELL PRODUCTION
Blood comprises approximately 55% liquid and 45% cellular material and fulfills
many recognized functions in mammalian physiology. The most important of
these is oxygenation of bodily tissues followed by an important secondary
function in combating disease, particularly infectious disease, via both cell-
based and humoral mechanisms.

Blood has been the subject of scientific inquiry from prehistory and
because of its ready accessibility and liquid nature has lent itself to early dis-
section of both organization and function. In the early part of the 20th century,
Carnot pioneered the idea that blood composition was controlled by a humoral
factor (1), which was ultimately identified as erythropoietin (EPO). This work
was founded on the observations made by Viault (2), who followed changes in
red blood cell count as he and his traveling companions (human and animal)
ascended to altitude. From early in the last century it was thus suspected that
blood composition may be subject to change in response to environmental
variation and that humoral factors may be the mediators of this effect.

The cellular constituents of blood had, of course, been observed by
Anthony van Leeuwenhoek in the 17th century in one of the first applications of
his newly invented microscope. Hence, the idea that there are various types of
blood cells and that their production is under humoral control is not really new,
nor is it confined to the era of recombinant proteins, which began in the 1970s.
However, that epoch did provoke unprecedented advances in understanding
cytokines in general and hematopoietic cytokines in particular, culminating in
the cloning of the first hematopoietic cytokine [interleukin-3 (IL-3)] in 1984 (3).

Understanding the basis of cellular diversity in blood had meanwhile
undergone equally important advances with the description of the first quan-
titative assays for murine hematopoietic “stem” cells in 1961 (4). Although
spleen colony-forming units (CFU-S) first described by Till and McCulloch were
ultimately demonstrated not to exhibit all of the hallmark properties that
characterize the most primitive hematopoietic stem cells (i.e., most CFU-S lacked
lymphoid differentiation potential and exhibited only a limited capacity for self-
renewal), this assay and the cell type it detected is viewed by many to have
ushered in the modern era of stem cell biology. The first in vitro colony for-
mation assays for hematopoietic progenitor cells were described in 1965 and
1966 (5,6). In these assays, bone marrow cells that were otherwise unrecogniz-
able were cultured in semisolid medium in the presence of crude preparations of
body fluids, tissue extracts, or medium “conditioned” by various cells. Since

1



[gajendra][6 X 9 Tight][D:/informa_Publishing/Mrsny_H7806_2400020/z_produc-
tion/z_3B2_3D_files/978-1-4200-7806-2_CH0001_O.3d] [17/8/09/15:45:16] [1–14]

these extracts (and later their components) stimulated the formation of blood
cell colonies, they acquired the descriptive name of “colony-stimulating factors”
(CSFs) and their cell targets, the equally unsurprising epithet “colony-forming
cells.”

Although spectacular progress had been made in the three previous dec-
ades, work in the early 1990s provided a remarkable leap in our insight into the
organization and control of hematopoiesis; an understanding that to date has
still to be equaled for any other tissue in the body. The hematopoietic cell
hierarchy, as it was defined at that time and as it is still understood today, is
represented by, at its root, a self-sustaining stem cell pool. Maintenance and
selected expansion of this pool occurs through processes of asymmetric cell
division, and some would say deterministic, others would say stochastic, cell
fate decisions that yield a heterogeneous pool of differentially committed pro-
genitor cells. At one extreme, these precursor cells may have the potential to
develop into any of the six blood cell lineages, and at the other extreme, they
may be capable of responding in one of only two ways—either by dying
(a process referred to as apoptosis) or by developing into a single type of mature
blood cell. Stem cell self-renewal is largely regulated by intracellular tran-
scription factors that control the expression of an array of “stemness” genes.
Oppositely, later processes of hematopoietic development are under the control
of extracellular humoral regulators—variously called the CSFs, growth factors,
interleukins, or cytokines. These cytokines act either alone or in concert to
control the number and type of blood cells that are produced. Some of them act
on relatively primitive cells with multilineage differentiation potential [e.g., IL-3
or stem cell factor (SCF)], while others act only on more committed cells in the
later stages of blood cell production (e.g., EPO).

Many of these cytokines have been purified and cloned and are available
in pharmaceutically useful quantities in recombinant form. Since they are large
molecules that cannot be absorbed intact through the gut or skin, recombinant
cytokines must be administered via intravenous or subcutaneous injection.
While some of these cytokines have been deployed as therapeutics used in
millions of patients, others have found little application in medicine and have
thus far remained useful only as laboratory reagents or research tools. Of those
that have found clinical utility, several have been reengineered to enhance their
drug-like attributes, while others remain essentially identical to the native
proteins purified from tissue sources.

RECOMBINANT HEMATOPOIETIC CYTOKINES
OF THERAPEUTIC IMPORTANCE
The discovery of hematopoietic cytokines, predominantly in the 1970s and
1980s, followed the development of assays to detect their activity like the in vitro
colony-forming cell assays introduced above. However, the larger challenge at
that time was purifying proteins with separate activities from the complex
biological fluids used as the starting material. Macrophage (M)-CSF (also known
as CSF-1) was the first hematopoietic growth factor to be purified, initially from
human urine and later from medium conditioned by a murine fibroblast cell
line (7). This was followed in the same year by the discovery of granulocyte-
macrophage (GM)-CSF in medium conditioned by tissues from the lungs of mice
previously treated with bacterial lipopolysaccharide (8). A few years later, a
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third myeloid growth factor was identified: granulocyte (G)-CSF (9). It was after
some years that the genes that encoded these proteins were cloned—cloning was
a relatively nascent technology at that time; thus, 1985 saw the cloning of human
M-CSF (10), EPO (11,12), and GM-CSF (13,14), and 1986 saw the cloning of
G-CSF (15,16), IL-3 (17), and IL-5 (18).

The natural versions of most hematopoietic cytokines are glycosylated, for
example, IL-3 (17), IL-5 (19), IL-6 (20), IL-7 (21), GM-CSF (13), G-CSF (22), M-CSF
(23), SCF (24), and EPO (25). In several cases, however, the carbohydrate has
been shown not to be required to maintain activity, for example, the O-linked
carbohydrate at threonine 133 on natural G-CSF. In one celebrated case however,
that of EPO, the carbohydrate component was found to be not only obligatory
for in vivo action but also amenable to manipulation to therapeutic advantage
(26). Endogenous cytokines are frequently heterogeneous at some level, often
because of posttranslational modifications such as glycosylation, sulfation,
proteolytic cleavage, etc. Recombinant forms may not therefore be identical to
the natural prototype and will vary markedly depending on the host cell in
which they are produced, method of purification, and a number of other factors.
Overall, the precise biochemical nature and activity of endogenous cytokines
remain largely unknown as does their comparability with recombinant prepa-
rations. Comparisons can be made to define relative potency, but other aspects
of product performance, for example, pharmacokinetics, safety, etc., must be
studied carefully in animals or humans and often in large numbers of subjects
and over extended periods before their safety and efficacy can be definitively
established.

With respect to the clinical development and subsequent consideration of
therapeutic proteins by regulatory agencies, it has been suggested that the
protein product is in essence the process used to manufacture it. This per-
spective presents a considerable hurdle in comparing related products like, for
example, follow-on biologics (FOBs), subsequent entry biologics, or biosimilars
intended to offer alternative products after innovator patent expiry. Thus, the
term “generic” is difficult to apply given the likely nonidentity of proteins
produced in different host cell systems that are purified and formulated using
different methods—presenting an interesting challenge for regulatory author-
ities for which differing solutions are being developed in different countries.

From a drug development perspective, the general observation that has
emerged from the medical exploitation of hematopoietic cytokines is that plei-
otropy is an undesirable property for such agents. More lineage-restricted
cytokines have, in general, proven more useful (27), as exemplified by the
clinical utility of EPO (28), G-CSF (29), and GM-CSF (30) and the promise of a
thrombopoietin (TPO) mimetic. In the following sections, the discovery and
development of these hematopoietic growth factors with demonstrated clinical
utility, and their pharmacokinetic (PK) and pharmacodynamic (PD) properties,
will be discussed.

STEM CELL FACTOR (STEMGEN11)
Also known as mast cell growth factor (MGF), kit ligand (KL), and steel factor,
SCF is the ligand for the cognate tyrosine kinase receptor c-kit. It is approved for
clinical use in limited countries as a coadministration with G-CSF for hema-
topoietic stem and progenitor cell mobilization based on phase 3 clinical trial
data in breast cancer patients (31). Despite its use in stem cell mobilization, all
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patients require prophylactic administration of H1 and H2 antihistamines and a
bronchodilator to ameliorate the collateral effects of SCF in stimulating mast cells.

The PK parameters of SCF in humans have not been extensively studied
but appear relatively unremarkable. A phase 1 trial in cancer patients indicated
a predose serum SCF level of around 1 mg/mL, with a Cmax 12 to 17 hours after
first administration, reducing with subsequent injections (32). Clearance was
linear, with a half-life of approximately 35 hours. More intriguing were the data
obtained for recombinant SCF administered to mice. Following intravenous
administration, radiolabeled material distributed very quickly to the lungs of
treated mice and was then eliminated via the kidney and liver with a half-life of
around two hours. Sl/Sld mice, which lack mast cells because of a genetic lesion
in the SCF gene, also accumulated SCF in the lungs but did not suffer the effects
of mast cell degranulation seen in their wild-type littermates (33).

The link between the PK and PD of SCF is not particularly clear. The major
PD endpoint measured in phase 3 trials was the mobilization of CD34þ cells.
However, mobilization is an indirect result of neutrophil-derived proteases
cleaving adhesion molecules that tether stem and progenitor cells to the bone
marrow stroma (34). Thus, mobilization is mechanistically related to the gran-
ulocyte response rather than a direct effect of SCF. Since SCF has been shown to
interact with intracellular G-CSF signaling (35), the phenomenon observed and
exploited in patients is understandable. This outcome may not be directly linked
to SCF, and so it may be causally distinct from the PK. In contrast, the side
effects (or at least unintended effects) on mast cells are better understood and
more satisfactorily linked to drug exposure.

GRANULOCYTE-MACROPHAGE COLONY-STIMULATING
FACTOR (LEUKINE11)
GM-CSF is one of two myeloid cytokines approved for clinical use in cancer
patients in the European Union and the United States, the other being G-CSF.
GM-CSF does not have the breadth of application that G-CSF has, with its
approved clinical uses being confined to acute leukemia and in transplant set-
tings. As the name implies, GM-CSF is more pleiotropic than G-CSF. Among the
documented effects of GM-CSF are stimulation of progenitor cell proliferation
(36), neutrophil function (37,38), monocyte activation (39), and dendritic cell
function (40), especially, as a vaccine adjuvant.

In a recent study (41), GM-CSF was administered daily for 10 days to
cancer patients; PK analysis showed a dose-dependent increase in drug level
several hours after the first administration when none had been detectable
beforehand. By the time of the next daily dose, about half the patients still had
low but detectable GM-CSF in their blood. In common with many cytokines, SC
administration prolonged the half-life of GM-CSF, possibly via delayed
absorption, with nonlinear clearance for escalating doses (42). With repeated
administration, clearance of GM-CSF gradually increases (41,43,44). Though the
mechanism for this effect is not well defined, it may include target cell–mediated
clearance as will be discussed later for M-CSF, G-CSF, and TPO. Intravenous
administration of GM-CSF illustrates two distinct phases of disposition: the first,
presumably representing initial distribution, is quick (T1/2 less than five
minutes); the second phase is slower, with T1/2 of two to three hours (45) rep-
resenting clearance.
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Hematological (PD) responses to administration of GM-CSF include
increases in circulating lymphocytes, monocytes, neutrophils, and eosinophils,
with small or no changes in erythrocytes and platelets (41). Though these effects,
especially on neutrophils, may be used to define the PK/PD relationship in, for
example, neutropenia after bone marrow transplantation, the desired PD in
other settings may not be so clear. For instance, in the deployment of GM-CSF
for immunotherapy applications, the increased leukocyte count, which relates to
both dose and duration of GM-CSF treatment, correlated positively with the
absolute number of putative immune effector (GM-CSFR�þ/CD14þ, GM-
CSFR�þ/CD66bþ) cells. In contrast, high doses of GM-CSF impaired antibody-
dependent cellular cytotoxicity (ADCC) in in vitro assays of harvested cells. This
suggests that dose and schedule need to be optimized for this application, but
the predictable PK of GM-CSF should make this relatively straightforward as
long as the nature of the desired biological effect is well defined. In practice, the
cell types required to elicit optimal immune function are not fully understood
and will require further study to define the desired PD of GM-CSF in what
would appear to be its most useful application.

MACROPHAGE COLONY-STIMULATING FACTOR
M-CSF is approved for clinical use in some countries under the name Leuko-
prol11 (mirimostim). It was originally cloned in 1985 but was one of the first
cytokines studied in the 1960s and had been purified from urine by 1975(46). As
the name would suggest, M-CSF was first shown to stimulate the growth of
bone marrow–derived monocyte/macrophage cells in vitro (7) but was sub-
sequently found to play a role in inflammation (47), bone remodeling (48),
reproduction (49), the central nervous system (50–52), and cancer (53–56).

PK studies using M-CSF created a new paradigm for understanding the
relationship between the PK and PD of hematopoietic cytokines. This new
understanding centers on the ability of these cytokines to stimulate the pro-
duction of their appropriate target cells, in this case monocytes/macrophages,
only then to have those very cells consume and ultimately clear the stimulator
from the serum as their numbers increase. This model has been extended to TPO
(57,58), EPO (59,60), G-CSF (61), and perhaps even GM-CSF (41,43,44), but rests
on insight gained from the study of M-CSF (62).

Mice normally have detectable levels of M-CSF in their serum, and studies
performed using radiolabeled M-CSF demonstrated the serum half-life of this
cytokine to be about 10 minutes. Approximately 96% of the cleared M-CSF could
be accounted for by splenic or hepatic macrophages, the remainder was elimi-
nated in the urine. Upon analysis of a number of parameters, including the effect
of lysosomal protease inhibitors, it was apparent that internalization and deg-
radation in macrophages via the cell surface M-CSF receptor, c-fms, was the
predominant mechanism of M-CSF clearance.

The implications of this mechanism are clear. First, the clearance of
physiological amounts of cytokines can be quite rapid, being mediated by the
normal population of receptor positive cells. Second, pharmacological levels of
exogenous cytokine can quickly saturate this clearance mechanism, leading to
prolonged exposure and increasing the relative contribution of nonspecific
clearance mechanisms, for example, renal filtration. Third, as the PD response to
the cytokine accumulates over time, the capacity of the selective clearance
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mechanism will increase, reducing the relative role of nonspecific pathways.
Fourth, in the absence of a target cell response, the clearance of a cytokine might
be rather slow, increasing as the response mounts. This model is very attractive
to explain homeostatic regulation of cytokine levels and target cell populations,
and has ramifications for therapeutic administration of recombinant cytokines
that share much of their biology with their endogenous prototypes. Indeed, this
exact mechanism was used to develop therapeutically enhanced versions of G-
CSF, as is outlined later.

GRANULOCYTE COLONY-STIMULATING FACTOR
(NEUPOGEN11, FILGRASTIM)
G-CSF was one of the earliest cytokines to be biologically and biochemically
characterized by the Australian CSF pioneers at the Walter and Eliza Hall
Institute of Medical Research in Melbourne under the guidance of such giants in
the field as Don Metcalf and Richard Stanley. It is due only to the insight of these
pioneers that human G-CSF could be purified (22) and cloned (15,16) elsewhere
and subsequently developed into a major therapeutic drug that has been
administered to several million cancer patients since its launch in 1991.

Some of the early studies were confounded by incomplete separation of
GM-CSF and G-CSF, and the seminal paper describing the activity of purified
human G-CSF referred to it as a pluripotent factor (22), possibly in error because
of assaying it on impure cell preparations. Nevertheless, from the early days,
experiments where G-CSF was used as a single activity showed that although
it was a modest CSF, it was highly selective in its actions on neutrophilic pro-
genitor cells (9,63). As it turned out, the modesty of its in vitro actions was
misleading, but its selectivity was probably not (for review see Ref. 29).
The dominant clinical effect of G-CSF action is neutrophilia, though minor
or sporadic effects on other blood cells have been reported. Most notably,
G-CSF is well documented to increase monocyte proliferation (64,65), which
may be linked also to reports of increased osteoclast-mediated bone turnover
(66,67). These data illustrate that increased bone turnover, at least in rodents,
results from expanded osteoclast activity after treatment (68). Whether this is
related to the profound effects of G-CSF on monocyte production kinetics
awaits definition of the relationship between these monocytes and osteoclast
development.

Humans injected with G-CSF can expect a neutrophil response within one
to two days (69–71). However, this is not the case after cancer chemotherapy
where G-CSF is normally used to treat neutropenia, because the marrow is often
not capable of responding on that timescale (69). This PD response is driven by a
rapid absorption of typically SC administered G-CSF, wherein peak concen-
trations are noted within two to eight hours. The elimination half-life after either
SC or IV administration is two to four hours depending on dose and neutrophil
count (61,72). As G-CSF is administered daily, the neutrophil count increases,
and in parallel, the clearance time of G-CSF is shortened; a relationship that was
correlated even in early studies with receptor number on neutrophils (73). As
noted above, this appears to be a very similar mechanism to that suggested for
the M-CSF PK/PD relationship, that is, the cellular response to a cytokine in
turn selectively clears that very cytokine, while in parallel a less saturable
pathway (renal clearance) accounts for the balance of the elimination.
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In an extension of this very satisfying model, a novel form of G-CSF was
engineered specifically to evade the nonselective clearance pathway, yielding a
new drug tailored to effect a neutrophil response that could only be cleared by
those very neutrophils once they accumulate to a sufficient level (74–78). This
form (pegfilgrastim) was designed for use in patients undergoing cancer che-
motherapy and in whom support for neutrophil production was required. The
underlying hypothesis in designing a form of G-CSF that would not be cleared
by the kidney yet would remain sensitive to neutrophil-mediated clearance was
that a degree of self-regulation would be an intrinsic feature of the molecule.
This was proven to be correct first in animal and then in clinical studies. During
neutropenia, the drug has an extended half-life; upon neutrophil recovery
clearance is reactivated (75). Thus, for the first time, a drug that offered “auto-
mated” control of neutrophil counts was developed. This exciting mechanism of
action has led to the broad uptake of pegfilgrastim in medical practice, but has
yet to be applied to other therapeutics.

ERYTHROPOIETIN (EPOGEN11, EPOETIN ALFA)
EPO is widely used in the treatment of anemia since it is the central regulator of
erythropoiesis. The major quantitative site of EPO production is the kidney, so
patients with declining renal function were the first and are still the most
obvious candidates for EPO therapy (79). Use in anemia associated with cancer
treatment is also common. Although controversial, a number of other experi-
mental uses have emerged since EPO was approved for use in 1989 (80),
including stroke, nerve crush injury, heart failure, myocardial infarction,
immunomodulation, and for improving cognitive function. It remains unclear
how these latter effects work in the absence of EPO receptor on many of the
target tissues (see Ref. 81 for a critique of methods used to claim otherwise).

Confining our discussion to the effects of EPO on erythropoiesis, it must be
borne in mind how highly dynamic is the process of red blood cell production.
A normal 70-kg human produces on the order of 2.5 � 1011 erythrocytes per day,
and this rate of production is maintained by a basal EPO level of around 10 to 20
mU/mL (82,83). Pharmacological administration of EPO at a dose intended to
sustain a three times per week dosing cycle (150 U/kg) or a weekly treatment
cycle (40,000 U/kg) leads to a Cmax of 150 or 850 mU/mL, respectively (84).
Reticulocytes are released earlier than normal from the bone marrow and reside
for a disproportionately longer fraction of their life span in the blood following
EPO therapy. Despite this being the first PD readout of EPO administration, the
more important result is a change in hemoglobin concentration. In the same
study (84), the reticulocyte shift could be clearly seen in the blood by five days
and a readily discernable change in hemoglobin by day 8—the two dosing
regimens being approximately the same despite the 30% dose increment with
the weekly regimen. This inefficiency is suggested to be driven by the non-
linearity of EPO PK, which seems to lean toward reduced clearance at higher
doses. In this case, it is likely that the similar PD response was driven by the
accumulated time above the concentration threshold required for pharmaco-
logical action, which was similar between the two regimens.

A model was expounded in the early 1990s (85,86) that still yields a satis-
factory explanation of the relationship between EPO exposure and response.
Furthermore, thismodel has to date proven satisfactory to explain the PD response
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to all erythropoiesis-stimulating agents (ESAs). The model states, in essence, that
the time between administrations during which the ESA serum level exceeds
the threshold for response is the sole driver of efficacy. Of course, the details of the
model parameters change with intrinsic potency of the ESA, dose, and clearance
parameters, but the model remains the same across all ESAs. The implication is
that all ESAs perform similarly when matched for the time above this threshold
level. Inefficiency does become a factor as the interval between injections gets
longer—explaining the 30% dose penalty with EPO administered once versus
three times per week, as shown in the above study. Longer-acting analogs of EPO
specifically engineered to improve half-life [darbepoetin alfa (87)] and pegylated
EPO [e.g., PEG-EPO� (88)] are not hampered by this inefficiency until after a
longer interval and are, therefore, able to sustain a desired clinical outcome for up
to three or four weeks between injections. It remains to be seen how dosing of a
non-EPO-based ESA may be approved by regulatory authorities (89), but initial
observations suggest adherence to the same PK/PD model.

THROMBOPOIETIN
Despite being named in 1958 (90), TPO was not isolated until 1994 when this
was achieved simultaneously by five groups (91–95). TPO is the seminal regu-
lator of platelet production, which, like M-CSF and G-CSF, is consumed by its
target cells (megakaryocytes and platelets) that express the c-mpl receptor
(57,58). Two forms of recombinant human TPO were initially examined in
clinical studies: a full-length and glycosylated molecule that is equivalent to the
native growth factor (rHuTPO) and a truncated and pegylated version known as
megakaryocyte growth and development factor (MGDF). None of these “first-
generation” agents attained regulatory approval mainly because of the pro-
duction of antibodies by the human immune system that were directed against
the administered therapeutic (96,97). These antibodies were also capable of
neutralizing endogenous TPO causing extended-term refractory thrombocyto-
penia. This spurred the creation of novel mpl ligands, seven of which have been
recently discussed (98) and all of which have the feature of no overlap in amino
acid sequence with endogenous TPO.

The PK of MGDF is reflected in a predictable absorption and elimination
profile (99), with Cmax being observed three to four days after a single SC
administration. Elimination is, as mentioned above, affected by the PD response
to the drug (57,58). In monkeys, the Cmax is attained in about 3 hours and MGDF
is eliminated with a half-life of around 8 to 13 hours (100). The PK and PD
characteristics of full-length recombinant human TPO and MGDF are similar
(101). Elimination half-lives are 24 to 40 hours for rHuTPO and 31 hours for
MGDF in humans.

The platelet response to administered MGDF is not immediate (102),
taking three to four days before even reticulated platelets (a controversial though
acceptable measure of early platelet increases) are detected in the circulation,
with platelet counts peaking only after around 13 to 15 days. This probably
reflects the indirect nature of mpl agonism on thrombocytopoiesis, the main
action being confined to an increase in megakaryocyte ploidy and matura-
tion rather than platelet formation (99). Similar kinetics are also exhibited by
AMG 531 (Nplate11, romiplostim), one of the third-generation synthetic peptide
mpl agonists (103). The medical exploitation of mpl ligands is not yet complete,
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with several third-generation molecules being developed for the treatment of
immune thrombocytopenic purpura (ITP). As with many biopharmaceuticals, it
is still unclear for which diseases they will finally be used and how the disease
setting will affect their PK/PD.

SUMMARY
Emerging from the confusion of the early days of hematopoietic cytokine dis-
covery was a simple view that for each type of blood cell there would be a single
lineage-specific regulator and for each cytokine there would be a specific and
defined function. This has not turned out to be the case—blood cell lineages are
affected by many different cytokines throughout their development. In addition,
all cytokines have been found to have a diverse array of actions, some direct,
others indirect, even for the most selective of agents, EPO and G-CSF. Other
cytokines have very complex actions, especially as part of overlapping cytokine
networks with hereto unforeseen interactions and interdependencies.

In general, most hematopoietic cytokines are short lived in the blood and
require repeated frequent injections to clearly see their actions. To improve their
utility as therapeutics, the exposure profile of some have been modified by
relatively simple pegylation, for example, G-CSF [pegfilgrastim (76)] and EPO
[PEG-EPOb (88)] and that of others by more complex glycoengineering, for
example, EPO [darbepoetin alfa (104)]. Some have been mimicked by peptides,
for example, EPO [hematide (89)], TPO (AMG 531), or even small molecules, for
example, TPO [eltrombopag (98)], while others have been conjugated into chi-
meric molecules, for example, G-CSF and Flt-3 ligand [progenipoietin (105)].

The field of hematopoietic cytokine biology continues to develop as
complex pathways are deconvoluted, and surprises continue to emerge (27). For
a number of these factors, end-cell regulation has emerged as a common method
of homeostatic control of cellular pathways, with cytokines serving as the central
humoral mediators. It remains to be seen how this will be exploited further for
the development of cytokine therapeutics with utility in human medicine.
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