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Preface

Despite the extensive effort over several decades searching for new pharmaco-

logical tools for clinical pain treatment, opioid analgesics remain the mainstay of

contemporary pain medicine. Opioid analgesics are extensively used for the

management of both acute and chronic pain including cancer-related pain.

Opioid analgesics have a number of side effects including respiratory depression,

miosis, nausea, vomiting, constipation, biliary tract spasm, urinary retention,

hypotension, dizziness, dysphoria, metal status change, and pruritis. However,

most of these side effects are dose dependent and manageable in the clinical

setting.

Other opioid-related clinical issues such as opioid tolerance, dependence,

and addiction have limited the use of opioid analgesics in pain medicine,

particularly for chronic pain management. More recently, both preclinical and

clinical studies have shown that chronic exposure to opioid analgesics can alter

the response of the central nervous system to nociceptive input leading to the

increased pain sensitivity, which is often referred to as opioid-induced hyper-

algesia. Both preclinical and clinical findings suggest that opioid analgesics that

are intended to reduce pain may paradoxically increase pain under certain

clinical conditions, calling for a new approach to managing clinical opioid

therapy.

This book is intended to provide clinically oriented discussions on the

diagnosis and management of opioid-induced hyperalgesia. Clinical practitioners

who are currently involved or interested in pain management are intended

primary readers, including such specialties as anesthesiology, pain medicine,

neurology, oncology, palliative care, addiction medicine, primary care, rheuma-

tology, and surgery.

The first chapter (by Dr Mao) provides an overview on the concept of

opioid-induced hyperalgesia, followed by a focused discussion on possible
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cellular mechanisms of opioid-induced hyperalgesia and its relation to opioid

tolerance (by Dr Ueda). The third chapter (by Drs Angst, Chu, Clark) provides

readers with a thorough discussion on the clinical features of opioid-induced

hyperalgesia and their impact in pain medicine. The clinical utility of quantita-

tive sensory testing in the diagnosis of opioid-induced hyperalgesia is the focus

of chapter 4 (by Dr Edwards), which gives the detailed accounts on the history,

methodology, and clinical utility of quantitative sensory testing.

The clinical interaction between addiction and opioid therapy is a vitally

important issue in pain medicine and addiction medicine. Chapter 5 (by

Dr Ballantyne) and chapter 6 (by Drs Ling and Compton) focus on the

relationship between addiction and clinical features and management of

opioid-induced hyperalgesia. These two chapters provide profound details on

the neurobiology, philosophy, clinical features, and clinical management of the

interaction between addiction and opioid-induced hyperalgesia.

Chapters 7 and 8 present practical guidelines on the clinical diagnosis and

management of opioid-induced hyperalgesia under various clinical circumstan-

ces, including primary care settings (by Dr McCarberg) and perioperative care

(by Drs Crooks and Cohen). Additional approaches to managing opioid-induced

hyperalgesia in other clinical circumstances are the topics of chapters 9, 10, and

11, which include discussions on the role of ketamine (by Dr Vorobeychik),

opioid rotation and tapering (by Dr Smith), and adjuvant medications (by Drs

Giampetro and Vorobeychik). The final chapter (by Dr Mao) summarizes

clinical differential diagnosis between opioid-induced hyperalgesia and opioid

tolerance and discusses future research directions on this important clinical

phenomenon.

I would like to express my deep appreciation for my colleagues in this

field, who have contributed to the work of this book project and/or basic science

and clinical research on this important topic.

Jianren Mao
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1

Overview on Opioid-Induced

Hyperalgesia

Jianren Mao

Department of Anesthesia, Critical Care, and Pain Medicine,
Massachusetts General Hospital, Harvard Medical School,

Boston Massachusetts, U.S.A.

INTRODUCTION

Opioids produce analgesia through a primarily inhibitory effect on the noci-

ceptive system. To date, opioids remain the most powerful analgesics for clinical

management of moderate to severe pain. Besides many known side effects of

opioids such as sedation and constipation, chronic opioid exposure is associated

with the development of tolerance to opioid analgesics. This process is largely

due to an adaptive change of the opioid analgesic system that leads to the

desensitization of opioid receptors and associated intracellular cascades.

Another consequence of chronic opioid exposure is the development of

opioid dependence. A notable feature of opioid dependence is that hyperalgesia

(exacerbated painful response to noxious stimulation) occurs during a precipitated

opioid withdrawal. Over the past 15 years, compelling preclinical evidence has

accumulated, indicating that hyperalgesia also occurs following opioid adminis-

tration in the absence of overt, precipitated opioid withdrawal. A growing body of

evidence suggests that the development of opioid-induced hyperalgesia is mediated

through the neural mechanisms that involve changes at the cellular and neural

circuit level, which interact with the mechanisms underlying the development of

pathological pain such as pain induced by peripheral nerve injury. Thus, chronic
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opioid exposure also leads to a sensitization process within the central nervous

system that is pronociceptive even in the presence of opioid analgesics.

As illustrated in Figure 1, the desensitization process reduces the clinical

efficacy of opioid analgesics, whereas the sensitization process facilitates

nociception, thereby counteracting the opioid analgesic effect. Both the desen-

sitization and sensitization processes lead to a pronociceptive outcome that

contributes to apparent clinical opioid tolerance, that is, the need for opioid dose

escalation to maintain the opioid analgesic effect. Since the nociceptive system is

a primitive and vital defense system, the development of analgesic tolerance and

hyperalgesia in response to chronic opioid exposure helps counteract the impact

of analgesics on blunting the nociceptive response as an important warning

signal. This chapter will focus on preclinical evidence for opioid-induced

hyperalgesia and its possible cellular mechanisms. The following chapters will

discuss clinical features of opioid-induced hyperalgesia and approaches to

diagnosing and managing this clinical condition. The last chapter of this book

will provide a brief summary on the clinical implications of opioid-induced

hyperalgesia and future research directions on this important clinical issue.

PRECLINICAL EVIDENCE FOR OPIOID-INDUCED HYPERALGESIA

Preclinical studies of opioid tolerance assess changes of the antinociceptive

efficacy before and after opioid boluses or continuous opioid administration. One

of the most commonly used methods in preclinical studies is a tail-flick test,

which is used to evaluate the antinociceptive effects of opioids. For example, the

Figure 1 Schematic illustration of two interrelated outcomes of chronic opioid exposure.

Both the desensitization and sensitization processes contribute to the enhanced pronoci-

ceptive process after chronic opioid exposure.
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opioid antinociceptive effect is seen as the increased baseline nociceptive

threshold in a tail-flick test. Conversely, a decrease in the baseline nociceptive

threshold is an indication of the hyperalgesic response. For years, differences in

baseline nociceptive thresholds before and after an opioid treatment are not

readily detected using the tail-flick test, because this test often uses a steep

stimulation curve with a fast-rising stimulation intensity that could mask subtle

changes of a baseline nociceptive threshold. By comparison, a test that utilizes a

slow-rising stimulation curve such as the foot-withdrawal test (1) enables the

detection of subtle changes in baseline nociceptive threshold.

As shown in Figure 2, a progressive reduction of the baseline nociceptive

threshold was observed using a foot-withdrawal test in rats receiving repeated

intrathecal morphine administration over a seven-day period (2–4). The reduced

baseline nociceptive threshold was also observed in animals receiving subcuta-

neous fentanyl boluses using the Randall–Sellitto test in which a constantly

increasing pressure is applied to a rat’s hind paw (5,6). The decreased baseline

nociceptive threshold lasted five days after the cessation of four fentanyl bolus

injections (5). Moreover, the reduced baseline nociceptive threshold was

detected in animals with repeated heroin administration (5). These results indi-

cate that repeated opioid administration leads to a progressive and lasting

reduction of the baseline nociceptive threshold, which is referred to as opioid-

induced hyperalgesia.

Since hyperalgesia occurs during an opioid withdrawal, it is possible that

the decreased baseline nociceptive threshold observed in these preclinical studies

simply reflects a subliminal withdrawal in which changes in the baseline noci-

ceptive threshold are present without other withdrawal signs such as wet-dog

Figure 2 A preclinical model of opioid-induced hyperalgesia. Intrathecal administration

of morphine (10 mg, once daily � 7 days) resulted in the decreased nociceptive threshold

in rats as detected using a foot-withdrawal test. *p < 0.05, as compared with the saline

group.
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shake and jumping. However, a progressive reduction of the baseline nociceptive

threshold is also present in animals receiving a course of continuous intrathecal

opioid infusion via osmotic pumps (3,4,7). Collectively, these data support the

notion that a prolonged opioid treatment not only results in the loss of the opioid

antinociceptive effect, a negative sign of system adaptation (desensitization), but

also leads to activation of a pronociceptive system manifested as the reduction of

the nociceptive threshold, a positive sign of system adaptation (sensitization).

NEURAL AND CELLULAR MECHANISMS UNDERLYING
OPIOID-INDUCED HYPERALGESIA

If the primary effect of opioids is inhibitory at various sites of the nociceptive

pathways, how would chronic opioid exposure lead to the sensitization of the

central nervous system? Both opioid tolerance and opioid-induced hyperalgesia are

initiated by opioid administration. It would be difficult to differentiate between

these two outcomes of opioid-induced changes, if the assessment end point is a shift

of opioid antinociceptive dose response curves in animal studies or a change in

opioid dose demand in clinical settings. However, these two outcomes would

involve two opposing cellular mechanisms, that is, a desensitization process versus

a sensitization process. Because of the involvement of two opposing cellular pro-

cesses, clinical approaches to resolving opioid tolerance and hyperalgesia should be

different. In this regard, it is important to understand the possible neural and

cellular mechanisms underlying the development of opioid-induced hyperalgesia

and their interaction with the mechanism of opioid tolerance. To date, several

possibilities have been raised with regard to the mechanisms of opioid-induced

hyperalgesia, as briefly summarized in the following sections.

Role of Spinal Dynorphin

It has indicated that spinal dynorphin plays an important role in the expression of

both opioid tolerance and abnormal pain sensitivity (for review see Ref. 8). Of

significance to note is that spinal dynorphin content increases following a period

of continuous infusion with a m-opioid receptor agonist (7). Moreover, there is an

increase in the evoked release of spinal excitatory neuropeptides such as calci-

tonin gene-related peptide from primary afferents in morphine-treated animals,

which requires the spinal dynorphin activity (9). These observations lend support

to the concept that opioid administration induces a pronociceptive process, in

part, by increasing the synthesis of excitatory neuropeptides and facilitating their

release upon peripheral stimulation.

Role of Descending Facilitation

Additional evidence for the involvement of a sensitization process following

opioid administration comes from a group of studies that indicate the influence
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of descending facilitation on opioid-induced pain sensitivity. First, subsets of

neurons (on- and off-cells) within the rostral ventromedial medulla (RVM) have

characteristic response patterns to opioids (10,11). Their activities may con-

tribute to the mechanisms of descending facilitation that influences spinal

nociceptive processing (12). Second, on-cell activity within the RVM increases

in association with the behavioral manifestation of naloxone-precipitated

hyperalgesia (13). Third, bilateral lesioning of the dorsolateral funiculus, an

anatomic pathway connecting the brainstem and spinal cord, blocks the increase

in spinal excitatory neuropeptides in opioid-treated animals (9), suggesting that

the descending facilitation may function in part through the modulation of spinal

neuropeptide contents.

Role of the Central Glutamatergic System

Activation of excitatory amino acid receptors such as the N-methyl-D-aspartate

receptor (NMDAR) has been implicated in the mechanisms of pharmacological

opioid tolerance (14,15). Subsequently, the NMDAR has been shown to be

critical to the cellular mechanisms of opioid-induced hyperalgesia (2,6). The

current data suggests that opioid-induced desensitization (pharmacological tol-

erance) and sensitization (opioid-induced hyperalgesia) processes may have

many common cellular elements that are linked to the activation of the gluta-

matergic system.

First, inhibition of NMDAR prevents the development of both pharma-

cological tolerance and opioid-induced hyperalgesia (2,14,15). Second, pertur-

bation of spinal glutamate transporter activity, which regulates extracellular

glutamate availability, modulates the development of both morphine tolerance

and the associated pain sensitivity (3). Third, the Ca2þ-regulated intracellular

protein kinase C (PKC) is likely to be an intracellular link between cellular

mechanisms of tolerance and opioid-induced hyperalgesia (2,16,17). Fourth,

cross talk between the neural mechanisms of opioid tolerance and pathological

pain may exist and contribute to the exacerbated pain and reduced opioid

analgesic efficacy under such circumstances (18,19). Fifth, prolonged morphine

administration induces NMDAR-mediated neurotoxicity in the form of apoptotic

cell death, which is, at least in part, contributory to both morphine tolerance and

abnormal pain sensitivity (4). Taken together, these lines of evidence strongly

indicate a critical role of the central glutamatergic system in the neural mech-

anisms of both opioid tolerance and opioid-induced hyperalgesia.

A Schematic Illustration of NMDAR-Mediated Cellular Mechanisms

If NMDAR were critically contributory to opioid-induced hyperalgesia, how

would chronic opioid exposure result in the activation of NMDAR? Figure 3

shows the interaction between opioid receptors and NMDAR at the cellular level

within the spinal cord dorsal horn, which includes a presynaptic site of primary
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nociceptive afferents, a postsynaptic site of projection neurons (neurons that send

ascending axons to the brain) or interneurons (neurons that participate in local

connections), and glial cells.

Opioid receptors (e.g., m-opioid receptors) are present, so are NMDARs, at

the presynaptic site, postsynaptic site, and glial cells. The NMDAR is a unique

receptor-Ca2þ channel complex. The activation of NMDAR leads to the opening

of the Ca2þ channel. Seated deeply inside the channel is the Mg2þ block that is

normally removed through partial depolarization of the cell membrane. This

partial depolarization takes place through activation of other coexisting receptors

such as non-NMDA glutamate receptors and neurokinin receptors (e.g., NK-1).

Since the predominant effect of opioid analgesics is the cell membrane

hyperpolarization, which is opposite to the cell membrane excitation (cell

depolarization), it would be difficult to envision that the deeply seated Mg2þ

block inside the NMDAR-Ca2þ channel complex could be removed in the

presence of the inhibitory effect of opioid analgesics. In this regard, the intra-

cellular PKC plays a pivotal role in removing the Mg2þ block in the absence of

partial depolarization of the cell membrane, because chronic opioid exposure

increases the PKC expression (18,19). That is, the NMDAR can be primed by

Figure 3 Schematic illustration of the NMDAR-mediated cellular mechanisms of

opioid-induced hyperalgesia (see the main text for a detailed discussion). Abbreviations:

gGT, glial glutamate transporter; nGT, neuronal glutamate transporter; Glu, glutamate; G,

G-protein; NMDAR, N-methyl-D-aspartate receptorl; PKC, protein kinase C.
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PKC activation, which is in turn induced by chronic opioid exposure. PKC

activation also plays a role in the desensitization of opioid receptors. Priming

NMDAR contributes to the mechanisms of opioid-induced hyperalgesia, whereas

desensitizing opioid receptors contributes to the mechanisms of opioid tolerance.

Moreover, chronic opioid exposure also downregulates both neuronal and glial

glutamate transporters and increases the glutamate (the endogenous ligand of the

NMDAR) availability at the synaptic site, further enhancing the NMDAR function.

As an example of possible cellular mechanisms of opioid-induced hyperalgesia, the

opioid receptor-NMDAR interaction supports the notion that chronic opioid

exposure could lead to a central state of pronociceptive process. Accordingly,

inhibition of NMDAR or PKC has been shown to prevent the development of

opioid-induced hyperalgesia in several preclinical studies (2).

SUMMARY

Several lines of evidence strongly support an active pronociceptive process

within the central nervous system initiated by chronic opioid exposure. It is

possible that the involvement of each of these cellular elements discussed in

the preceding text may depend on the route (intrathecal vs. systemic) and the

duration of opioid administration. For instance, the difference between the

involvement of the central glutamatergic system and dynorphin is that opioid

tolerance could be reduced acutely by a dynorphin antiserum but not by an

NMDAR antagonist (2,7,14), although both systems are involved in the mecha-

nisms of opioid-induced hyperalgesia. Another interesting issue is that since the

descending facilitation is triggered by activation of opioid receptors, the devel-

opment of opioid tolerance (a desensitization process) at the cellular level may,

over time, diminish the impact of the descending facilitation on the maintenance

of opioid-induced hyperalgesia.

Clinical features of opioid-induced hyperalgesia will be thoroughly discussed

in other chapters. In the final chapter of this book, a detailed discussion on the

clinical implications of opioid-induced hyperalgesia will be provided as well.
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